

江阴市徐霞客镇黄泥头路东、湖庄村 路南地块土壤污染状况调查报告 (备案稿)

委托单位: 江阴市霞客湾科学城开发建设有限公司 调查单位: 江阴市环保集团有限公司 二〇二四年三月

建设用地土壤污染状况调查报告 编制单位承诺书

调查单位郑重承诺:

调查单位出具的《江阴市徐霞客镇湖庄村路南、黄家村西侧地块土壤污染状况调查报告》严格按照国家有关法律、法规、标准规范和相关技术指南导则编制,本单位对该报告真实性 准确性 完整性负责。

报告编制人员具体情况如下:

项目分工	姓名	专业/职称	联系电话	签名
项目负责人、 报告编制	赵梦佳	工程师	15161658037	
数据校核与 检查	周勇	工程师	18861655344	
报告审核	张宇	副高工程师	13815120399	

备注:该报告于2024年3月7日通过单位内部审核。

如出具虚假报告,愿意承担全部法律责任。

承诺单位:

日期: 2024年3月7日

摘 要

江阴市徐霞客镇黄泥头路东、湖庄村路南地块,占地面积为 17232m²,约 25.85 亩。根据《江阴市徐霞客镇区控制型详细规划图(2023.11.17)》,该地块用途为公共管理与公共服务用地中的文化设施用地(A2),属于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地。为了解地块土壤污染状况,江阴市霞客湾科学城开发建设有限公司委托江阴市环保集团有限公司对江阴市徐霞客镇黄泥头路东、湖庄村路南地块开展地块土壤污染状况调查。

通过资料收集、现场踏勘及相关人员访谈等方式进行了第一阶段土壤污染状况调查。

调查地块现状:项目地块为空地,地块内有面积约 1000m² 的地表水体,地块内无外来填土及填埋痕迹,地块内土壤颜色无异常,现场未闻到刺激性气味,地块内无建筑垃圾、在建构筑物、生产设施及地下管线。

邻近地块现状:地块西侧和东侧为空地,地块北侧为湖庄村路,隔路为空地, 北侧 100 米为空置商业用房,地块南侧为地表水体。

调查地块历史状况: 地块 90 年代以前未扰动, 90 年代-2018 年间, 地块作 宅基地和农田使用, 地块内西侧有约 8 户民房, 民房东侧区域为农田, 2018 年 地块内民房陆续拆除, 2018 年-至今, 地块为空置状态。地块内各个历史使用阶段均未进行工业开发或固体废物的处理或填埋, 无建筑垃圾及外来堆土, 无暗沟、渗坑, 没有历史管线、管道沟渠等, 调查地块历史上无潜在污染源。

邻近地块历史状况: 90 年代地以前未扰动, 90 年代-2018 年间, 北侧、西侧和东侧为少量民房; 2018 年-至今, 北侧、西侧和东侧为空地。 地块南侧历史至今为地表水体, 调查地块周边范围历史上无潜在污染源。

为了更进一步确保调查地块无污染,对调查地块土壤进行快筛及地表水和底泥进行检测。现场快速筛查表层土壤 50 个 , 采集分析地表水和底泥样品各 2 个。

根据地块内土壤样品 PID 和 XRF 检测结果,重金属砷、镉、铅、汞、镍和铜检测结果均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值,铬和锌检测结果均低于深圳市地方标准

《建设用地土壤污染风险筛选值和管制值》(DB4403/T 67-2020)表 2 中第二 类用地筛选值。 PID 检测结果未见异常。

根据地表水样品检测结果,地表水检测指标中pH 值、砷、镉、六价铬、铜、铅、汞和可萃取石油烃(C₁₀-C₄₀)检测结果均达到了《地表水质量标准》(GB 3838-2002)表1中 I 类标准限值,镍、VOCs 和 SVOCs 均未超过《地表水质量标准》(GB 3838-2002)的表3集中式生活饮用水地表水源地特定项目标准限值。根据底泥样品检出结果,底泥检测指标均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值。

本次调查活动依据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019) 开展,调查结果表明,江阴市徐霞客镇黄泥头路东、湖庄村路南地块满足规划用 地的土壤环境质量要求,可作为文化设施用地(A2)进行开发使用。

目 录

1	前言	1
2	概述	2
	2.1 调查目的和原则	2
	2.1.1 调查目的	2
	2.1.2 调查原则	2
	2.2 调查范围	3
	2.3 调查依据	8
	2.3.1 法律法规和文件	8
	2.3.2 技术导则、规范	8
	2.3.3 评价标准	9
	2.3.4 其他资料清单	9
	2.4 调查方法	10
3	地块概况	12
	3.1 区域环境概况	12
	3.1.1 地理位置	12
	3.1.2 气候气象	12
	3.1.3 地形地貌	12
	3.1.4 水文水系	15
	3.1.5 经济状况	15
	3.1.6 地块水文地质条件	15
	3.2 敏感目标	21
	3.3 地块使用现状和历史	23
	3.3.1 地块使用现状	23
	3.3.2 地块历史沿革	24
	3.4 相邻地块的使用现状和历史	29
	3.4.1 相邻地块现状	29
	3.4.2 相邻地块历史	32
	3.5 地块利用规划	38
4	资料收集与分析	40
	4.1 政府和权威机构资料	40
	4.2 地块资料收集	40
	4.3 收集资料分析	41
5	现场 路 期 及 人 员 方	42

	5.1	现场踏勘	42
	5.2	人员访谈	45
	5.3	资料收集、现场踏勘、人员访谈的一致性分析	47
	5.4	小结	47
6	地块;	调查	48
	6.1	现场快筛	49
		6.1.1 快筛检测方法	49
		6.1.2 快速检测方案	49
		6.1.3 现场快筛质控	53
		6.1.4 现场快速检测照片	54
		6.1.5 快速检测结果	56
	6.2	地表水、底泥检测	61
		6.2.1 样品检测项目及检测方法	61
		6.2.2 地表水、底泥检测结果	63
		6.6.3 采样检测质量控制	65
7	结果和	和分析	70
	7.1	第一阶段土壤污染状况调查小结	70
	7.2	现场快筛测试	70
	7.3	不确定性分析	72
8	结论和	和建议	72
	8.1	调查结论	72
	8.2	建议	73
9	附件		74

1 前言

江阴市徐霞客镇黄泥头路东、湖庄村路南地块占地面积 17232m²(25.85 亩), 经现场踏勘、人员访谈和卫星图等资料显示: 地块 90 年代以前未扰动, 90 年代-2018 年间, 地块作宅基地和农田使用, 地块内西侧有约 8 户民房, 民房东侧区域为农田, 2018 年地块内民房陆续拆除, 2018 年-至今, 地块为空置状态。90 年代-2018 年间, 北侧、西侧和东侧为少量民房, 2018 年-至今, 北侧、西侧和东侧为空地, 地块南侧历史至今为地表水体。地块内及四周历史至今无工业生产活动, 地块今后拟作为文化设施用地(A2)进行开发使用。

根据 2019 年 1 月 1 日施行的《中华人民共和国土壤污染防治法》的第五 十九条规定:用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规 定进行土壤污染状况调查。土壤污染状况调查报告应当报地方人民政府生态环境 主管部门,由地方人民政府生态环境主管部门会同自然资源主管部门组织评审。

为保证土地开发利用安全,加快项目地块后期建设,实现用地安全、环保可持续的发展,受江阴市霞客湾科学城开发建设有限公司委托,江阴市环保集团有限公司对江阴市徐霞客镇黄泥头路东、湖庄村路南地块开展土壤污染状况调查工作。2023年12月10日-2024年2月8日,江阴市环保集团有限公司在地块内开展第一阶段土壤污染状况调查,工作内容包括文件审阅、现场踏勘、人员访谈、表层土壤快筛等,编制完成了《江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告》,为后续土壤环境管理工作提供依据。

2 概述

2.1 调查目的和原则

2.1.1 调查目的

根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)等导则及技术规范,对江阴市徐霞客镇黄泥头路东、湖庄村路南地块开展土壤污染状况调查。通过资料收集、现场踏勘和人员访谈等方法,分析地块内及周边地块的现状和历史,识别潜在污染状况和污染源,明确地块内土壤和地下水是否受到污染,为后续地块开发利用决策提供依据。

2.1.2 调查原则

- (1) 针对性原则: 针对地块的特征和潜在污染物特性,调查污染物浓度和空间分布,为地块的环境管理提供依据。
- (2) 规范性原则:采用程序化和系统化的方式规范地块土壤污染状况过程, 保证调查过程的科学性和客观性。
- (3) 可操作性原则:综合考虑调查方法、时间和经费等因素,使调查过程切实可行。

本次调查将以国家技术规范、标准、导则为主,按照与委托方商定的工作任 务,对地块进行土壤污染状况调查。

2.2 调查范围

本次调查的范围为江阴市徐霞客镇黄泥头路东、湖庄村路南地块(以下简称"调查地块"),占地面积为17232m²(25.85亩),地块内有面积约1000m²的地表水体,地块北侧为湖庄村路,隔路为空地,地块西侧和东侧均为空地,地块南侧为地表水体,地块红线范围见图2.2-1,宗地图见图2.2-2,拐点坐标(来源于业主提供的宗地图文件)见表2.2-1。

图 2.2-1 项目地块红线图 (2023 年 Google Earth 卫星图)

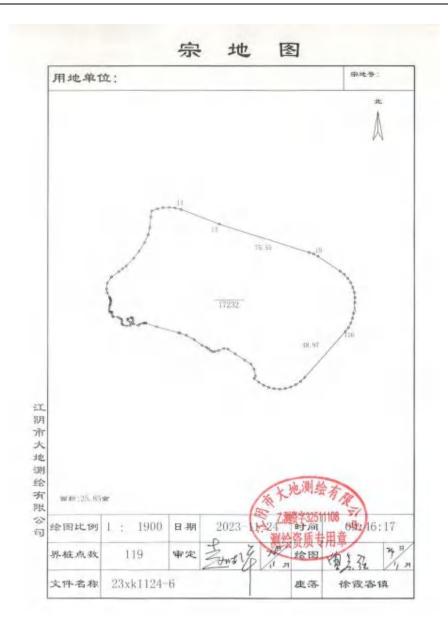


图 2.2-2 地块宗地图 表 2.2-1 项目地块拐点坐标

编号	2000 国家大地坐标系		
	纵坐标(X)/m	横坐标(Y)/m	
1	3509448.306	40530458.24	
2	3509456.998	40530459.22	
3	3509461.153	40530459.36	
4	3509465.281	40530458.86	
5	3509469.283	40530457.73	
6	3509473.063	40530456.00	
7	3509476.530	40530453.70	
8	3509479.601	40530450.90	
9	3509482.202	40530447.66	

10	2500404 202	40520420.07	
10	3509494.202	40530430.07	
11	3509496.084	40530426.72	
12	3509497.363	40530423.10 40530351.05	
13	3509520.106		
14	3509531.841	40530320.28	
15	3509533.037	40530315.64	
16	3509533.518	40530310.88	
17	3509533.272	40530306.10	
18	3509532.306	40530301.42	
19	3509530.642	40530296.93	
20	3509525.783	40530296.21	
21	3509517.24	40530295.42	
22	3509511.539	40530294.20	
23	3509504.938	40530291.22	
24	3509498.154	40530286.87	
25	3509492.586	40530282.65	
26	3509486.312	40530276.70	
27	3509484.171	40530273.88	
28	3509481.756	40530270.70	
29	3509477.645	40530265.01	
30	3509477.506	40530264.87	
31	3509477.364	40530264.72	
32	3509472.678	40530261.58	
33	3509467.912	40530260.92	
34	3509464.889	40530261.52	
35	3509461.187	40530263.33	
36	3509461.128	40530263.36	
37	3509461.029	40530263.41	
38	3509460.456	40530263.69	
39	3509459.898	40530263.92	
40	3509459.352	40530264.10	
41	3509458.862	40530264.30	
42	3509458.284	40530264.28	
43	3509456.953	40530264.23	
44	3509455.856	40530264.01	
45	3509454.997	40530263.76	
46	3509453.739	40530263.40	
47	3509451.422	40530263.11	
48	3509449.448	40530263.29	
49	3509449.383	40530264.27	
	I		

50	3509449.378	40530264.58	
51	3509449.364	40530265.40	
52	3509449.183	40530265.40	
53	3509447.404	40530265.33	
54	3509445.911	40530265.83	
55	3509445.589	40530265.83	
56	3509445.275	40530269.99	
57	3509444.422	40530271.58	
58	3509443.816	40530272.72	
59	3509443.422	40530272.91	
60	3509442.34	40530273.44	
61	3509440.541	40530273.17	
62	3509439.590	40530273.436	
63	3509439.013	40530274.524	
64	3509438.381	40530276.874	
65	3509438.551	40530279.631	
66	3509439.686	40530280.543	
67	3509441.059	40530280.096	
68	3509442.457	40530278.276	
69	3509443.377	40530277.514	
70	3509443.932	40530278.102	
71	3509444.886	40530280.548	
72	3509444.940	40530281.125	
73	3509444.471	40530281.788	
74	3509442.832	40530282.080	
75	3509440.831	40530281.843	
76	3509439.849	40530282.592	
77	3509438.845	40530286.106	
78	3509439.800	40530287.787	
79	3509440.587	40530290.275	
80	3509440.598	40530290.981	
81	3509440.610	40530291.844	
82	3509440.616	40530292.240	
83	3509440.566	40530292.393	
84	3509437.773	40530300.924	
85	3509432.821	40530318.498	
86	3509432.493	40530319.661	
87	3509430.706	40530324.642	
88	3509427.407	40530330.841	
89	3509422.712	40530337.264	

	40530340.666
	40530342.370
3509418.502	40530344.05
3509417.615	40530345.91
3509417.859	40530347.65
3509418.568	40530350.42
3509418.579	40530350.46
3509420.262	40530354.77
3509419.738	40530358.06
3509415.861	40530364.03
3509410.964	40530371.58
3509407.63	40530376.71
3509403.464	40530379.18
3509398.14	40530380.42
3509396.1	40530379.24
3509396.004	40530379.2
3509393.079	40530383.02
3509390.66	40530386.81
3509388.905	40530390.94
3509387.863	40530395.31
3509387.562	40530399.79
3509388.011	40530404.25
3509389.198	40530408.58
3509391.09	40530412.66
3509393.634	40530416.36
3509396.758	40530419.58
3509433.649	40530451.78
3509436.903	40530454.21
3509440.485	40530456.13
3509444.315	40530457.48
	3509417.859 3509418.568 3509418.579 3509420.262 3509419.738 3509415.861 3509407.63 3509407.63 3509398.14 3509396.10 3509396.004 3509393.079 3509390.66 3509388.905 3509387.863 3509387.562 3509388.011 3509389.198 3509391.09 3509393.634 3509393.634 3509393.634 3509396.758 3509433.649 3509436.903 3509440.485

2.3 调查依据

2.3.1 法律法规和文件

- (1) 《中华人民共和国环境保护法》(2015年1月1日施行);
- (2)《中华人民共和国水污染防治法》(2017年6月27日施行);
- (3)《中华人民共和国土壤污染防治法》(2019年1月1日施行);
- (4)《中华人民共和国固体废物污染环境防治法》(2020年4月29日修正版):
 - (5) 《污染地块土壤环境管理办法(试行)》(2016年12月31日);
 - (6)《工矿用地土壤环境管理办法(试行)》(2018年8月1日);
 - (7) 《土壤污染防治行动计划》(2016年5月28日):
 - (8)《江苏省土壤污染防治工作方案》(2016年12月27日)。

2.3.2 技术导则、规范

- (1)《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019);
- (2)《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019):
- (3) 《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019):
- (4)《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019):
- (5) 《土壤环境监测技术规范》(HJ/T 166-2004):
- (6) 《地下水环境监测技术规范》(HJ 164-2020);
- (7) 《地下水污染健康风险评估工作指南》(2019年9月);
- (8) 《岩土工程勘察规范》(GB 50021-2001);
- (9) 《建筑工程勘探与取样技术规程》(JGJ/T 87-2012);
- (10)《建设用地土壤环境调查评估技术指南》(生态环境部,第72号公告,2017年12月14日):
- (11)《建设用地土壤污染状况调查质量控制技术规定(试行)》(生态环境部,第17号公告,2022年7月7日);
 - (12) 《江苏省污染防治条例》(2022年3月31日)。

2.3.3 评价标准

- (1)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018);
 - (2) 《地表水环境质量标准》(GB 3838-2002);
- (3)深圳市地方标准《建设用地土壤污染风险筛选值和管制值》(DB 4403/T 67-2020)。

2.3.4 其他资料清单

本次调查通过业主方,网络搜索及走访等渠道,搜寻到与本次项目调查相关的一系列资料,其具体资料清单如表 2.3-1 所示。

序号 资料类别 资料名称 资料来源 航拍或卫星图片 历史卫星图 Google Earth 1 地块利用 变迁资料 2 规划资料 规划资料 业主 地块红线 地块拐点坐标文件 业主 3 地块相关 徐霞客梦东方文化创意 记录 产业园住宅项目岩土工 4 水文地质报告 业主 程勘察报告

表 2.3-1 项目地块资料清单

2.4 调查方法

根据《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019)中相关技术要求,土壤污染状况调查的工作技术路线包括三个阶段,本项目为第一阶段土壤污染状况调查。

第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。

主要工作方法包括资料收集、现场勘查、人员访谈和样品测试。

- (1)资料收集:主要包括地块利用变迁资料、土地利用规划资料、地块环境资料、地块相关记录、区域环境资料、区域自然和社会信息等。调查人员根据专业知识和经验识别资料中的错误和不合理的信息,筛选出合理和有价值的信息。
- (2) 现场勘查:主要包括地块的现状和历史情况勘查、周边地块的现状和历史情况勘查、周围区域的现状和历史情况调查、区域的地质、水文地质和地形的描述等。现场勘查过程中可通过气味辨识、摄影照相和现场笔记等方式判断地块污染状况。
- (3)人员访谈:采取当面交流、电话交流、书面调查表等形式,对地块现状和历史的知情人进行访谈,对照已有资料,进行信息补充和考证。访谈对象包括土地使用者(包括过去和现在各阶段)、地块管理机构和地方政府人员、生态环境行政主管部门人员、其他熟悉地块的人员。
- (4) 样品测试:采取现场快速筛查的形式,通过 PID、XRF 快速测定仪器 对地块表层土壤的挥发性有机物和重金属进行测试。对地块内及其周边地表水及 底泥采样至实验室检测分析。

本地块土壤环境调查技术路线见图 2.4-1。

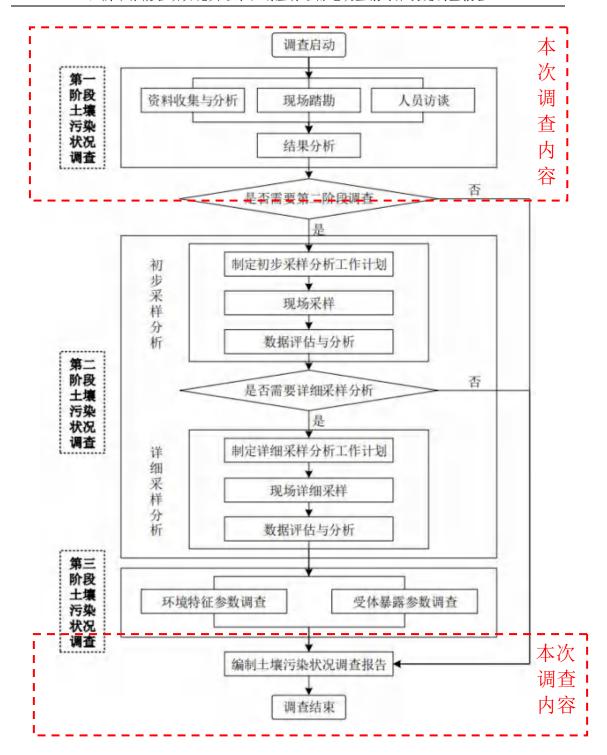


图 2.4-1 地块土壤污染状况调查流程

3 地块概况

3.1 区域环境概况

3.1.1 地理位置

徐霞客镇隶属于江苏省江阴市,位于长江三角洲苏、锡、常经济圈的几何中心,南傍太湖,北依长江,地理位置优越,水陆空交通便利。徐霞客镇是明代杰出的地理学家、旅行家徐霞客的故乡。徐霞客镇,镇以人名,南邻无锡,北接江阴市区,是江阴市区域面积最大的镇,总面积110平方公里,户籍人口12万,常住人口18万。历史悠久,人文荟萃,文化底蕴深厚,是吴文化的发祥地之一。

本次调查地块为江阴市徐霞客镇黄泥头路东、湖庄村路南地块,地块地理坐标范围为 120.319234735°E~120.321327921°E,31.706815105°N~31.708133762°N,地块地理位置图见图 3.1-1。

3.1.2 气候气象

江阴地区的气候属亚热带北纬湿润季风区,具有气候温和、雨量充沛、四季分明、阳光充足、无霜期长、长江无冰冻等特点。常年主导风为东南风,平均风速为 3.6 米/秒,历年最大风速为 20 米/秒。年平均气温 15.2℃,近年最低气温-6℃,最高气温 41℃,年平均降雨量为 1025.6 毫米,年平均气压为 1016 毫帕,年平均相对湿度为 67%。

3.1.3 地形地貌

江阴市属于南京边缘的凹陷印支运动时期由于大部分地区断块下陷形成的 白垩纪构造盆地。盆地形成后继续下降,上面堆积了深厚的新生界沉积物,地面 出露的地层比较简单,丘陵均为泥盆系五通组合茅山群,其他地层被第四系沉积 层所掩埋。地势东北部较高,西北部为平地。境内河道纵横,较大的有桃花港、 璜上河等,水资源充足。

据有关资料表明,江阴位于扬子断块区的江南断褶带内,由晚元古代的变质基底和震旦纪以后的沉积盖层组成。江阴位于常澄中断束的东北端,即称之为江阴断褶带,北西侧为申港中断凹陷,南东侧为青阳-锦丰中断凹陷,在构造形态上表现为断褶隆起,其边界受断裂所控制,常澄中断束带总体构造线方向为北东

至北东东向,以泥盆系茅山群及三迭系青龙群为核部,分别组成了本区内的江阴复背斜三个构造带。江阴复背斜为一复背斜构造带,轴部在江阴香山、凤凰山、澄江镇一线,走向由 NE450 逐渐变为 NE650,呈略向 NW 凸起的 NEE 向弧形展布。复式背斜两翼产状变化大,北西翼陡,倾角一般在 250—600;南东翼较缓,倾角 200-400。本区内的第四纪沉积物受基岩构造、长江河道的变迁及海平面的升降控制,可分为长江冲海积平原和山前残积两大类,本场地的第四纪沉积物属长江冲海积平原。

该地块位于江阴西郊,长江南岸,离长江约 3 公里,地形平坦开阔,属于 长江下游冲积平原。地面高程 2~3m (黄海系统),属长江三角洲区的一部分。

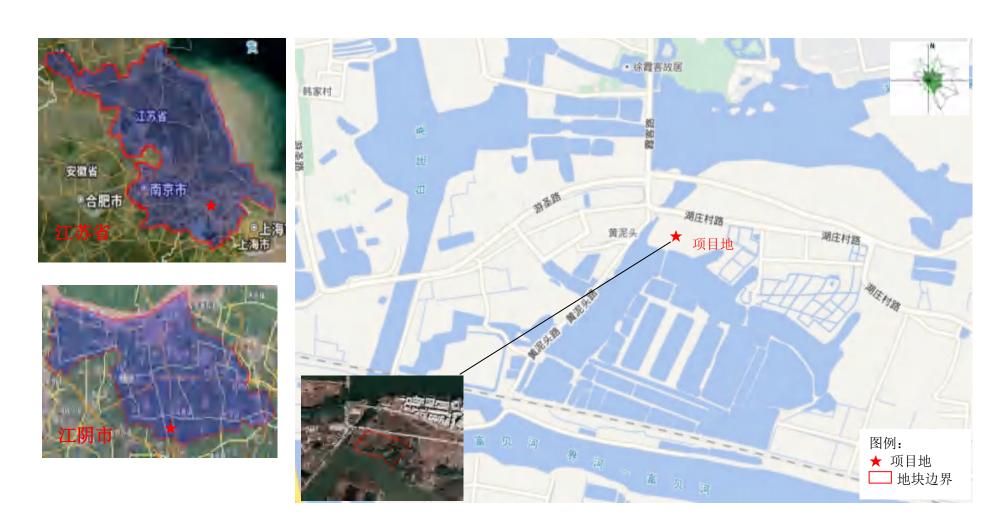


图 3.1-1 地块地理位置图

3.1.4 水文水系

江阴水系众多,全市可分为城西新沟河水系、中部锡澄运河水系和东部张家 港水系。地块内地下水埋深较浅,属于松散岩类孔隙潜水。

本区浅部地下水主要为潜水。潜水主要分布于(1-1)层素填土中,补给来源主要为大气降水,具有季节性变化,排泄于自然蒸发,其水位受大气降水影响明显。

徐霞客镇历史最高水位为 3.19m, 3~5 年内最高潜水水位标高 2.60m 左右。 地块北侧为湖庄北荡,水面标高 1.40m (测量日期: 2019.3.15),水深为 0.20~3.20m,河底浮淤厚为 0.10~2.10m,河塘基底标高-1.00~-2.87m。

3.1.5 经济状况

徐霞客镇地处的苏南地区是我国民族工业和乡镇企业的发源地,著名的"苏南模式"就在这里诞生,工业基础良好,经济发达,市场繁荣。该镇经济建设和社会事业发展迅速,经济实力跨入全国百强乡镇行列,荣膺全国投资环境百佳乡镇称号,集全国小城镇经济综合开发示范镇、江苏省重点建设中心镇、江苏省新型小城镇、江苏省实施教育现代化工程先进镇、江苏省文明镇、江苏省卫生镇、江苏省环境与经济协调发展示范镇于一身。全镇产业特色明显,发展布局合理,基本形成了,"一二三产业齐头并进"的发展趋势。

3.1.6 地块水文地质条件

本次调查阶段技术人员主要参考《徐霞客梦东方文化创意产业园住宅项目岩土工程勘察报告》(勘察编号: G2019016-1, 2019年12月)中水文地质情况,梦东方文化创意产业园住宅小区位于调查地块东北侧,距离调查地块直线距离约450米。

由于地块周围水系众多,调查地块附近未收集到无河流阻隔地块的工程勘察报告,本次调查地块与徐霞客梦东方文化创意产业园地块地质条件具有一定的相似性,具体位置详见图 3.1-2。

图 3.1-2 引用地勘地块与项目地块位置图

3.1.6.1 地质情况

根据本次勘察所揭露的地层资料分析,拟建场地 60.50m 深度范围内地层为第四系全新统、更新统沉积物,主要由素填土、淤泥质粉质黏土、粉质黏土、粉土等组成,按其沉积年代、成因类型及其物理力学性质的差异,可划分成 19 个主要层次。其特征描述如下:

- ① (1-1) 层素填土:杂色,松散,湿,主要成分为粉质黏土,含大量植物根茎,在拟建场地西北部为厂房拆迁,局部为杂填土和建筑垃圾。厚度:0.50~6.00m,平均1.55m;层底标高:-3.36~2.46m,平均0.78m;层底埋深:0.50~6.00m,平均1.55m。
- ② (1-2) 层淤泥质粉质黏土: 灰色,流塑,局部软塑,含少量有机质(平均值 3.5%)及腐植物,稍有光泽,无摇振反应,干强度低,韧性低。场区局部分布,厚度: 0.50~8.50m,平均 2.56m; 层底标高: -7.96~-0.91m,平均-3.24m; 层底埋深: 0.50~9.60m,平均 3.42m。
- ③ (2) 层粉质黏土: 灰黄色, 可塑~硬塑, 含铁锰质结核及其氧化物, 有 光泽, 无摇振反应, 干强度高, 韧性高。场区局部分布, 在河塘、软土地段缺失 或变薄, 厚度: 0.50~5.50m, 平均 3.77m; 层底标高: -3.83~-2.27m, 平均-3.10m;

层底埋深: 2.40~6.60m, 平均 5.38m。

- ④ (3) 层粉质黏土: 灰黄色, 可塑, 含铁锰质结核及其氧化物, 稍有光泽, 无摇振反应, 干强度中等, 韧性中等。场区局部分布, 在河塘地段缺失或变薄, 厚度: 0.50~2.70m, 平均 1.65m; 层底标高: -5.67~-3.85m, 平均-4.80m; 层底埋深: 2.50~8.60m, 平均 6.62m。
- ⑤ (4-1) 层粉质黏土: 灰色,可塑~软塑,含少量腐植质,局部含白色贝壳,局部夹黏质粉土团块,稍有光泽,略具摇振反应,干强度和韧性中等。厚度: 0.80~4.20m,平均 1.51m;层底标高: -9.40~-5.22m,平均-6.29m;层底埋深: 3.60~11.70m,平均 8.04m。
- ⑥ (4-2) 层黏质粉土夹粉质黏土: 灰色, 中密, 湿~很湿, 含云母碎屑, 局部夹粉质黏土薄层, 摇振反应迅速, 干强度和韧性低。厚度: 0.60~3.60m, 平均 1.80m; 层底标高: -9.70~-7.24m, 平均-7.97m; 层底埋深: 5.50~11.60m, 平均 9.60m。
- ⑦ (5-1) 层粉质黏土: 灰~青灰色, 可塑, 局部硬塑, 含铁锰质结核及其氧化物, 有光泽, 无摇振反应, 干强度中等, 韧性中等。场区普遍分布, 厚度: 4.20~6.30m, 平均 5.55m; 层底标高: -14.07~-12.82m, 平均-13.49m; 层底埋深: 10.80~17.40m, 平均 14.89m。
- ⑧ (5-2) 层粉质黏土:局部为黏土,灰黄色,硬塑,局部可塑,含铁锰质结核及其氧化物,有光泽,无摇振反应,干强度高,韧性高。场区普遍分布,厚度:5.90~7.90m,平均 6.89m;层底标高:-21.19~-19.47m,平均-20.35m;层底埋深:17.80~24.00m,平均 22.31m。
- ⑨ (5-3) 层粉质黏土夹黏质粉土: 灰黄色, 可塑, 局部软塑, 含铁锰质结核及其氧化物,稍有光泽, 无摇振反应, 干强度中等, 韧性中等, 局部夹少量黏质粉土; 在 B20#楼处,该层局部位置以黏质粉土为主,夹少量粉质黏土薄层。场区普遍分布,厚度: 1.80~3.20m,平均 2.47m; 层底标高: -23.72~-21.88m,平均-22.80m; 层底埋深: 19.90~26.50m, 平均 25.00m。
- ⑩ (5-4) 层粉质黏土: 灰黄~黄灰色, 可~硬塑, 含铁锰质结核及其氧化物,有光泽, 无摇振反应, 干强度高, 韧性高。场区普遍分布, 厚度: 3.70~6.10m,

- 平均 5.08m; 层底标高: -29.22~-27.11m, 平均-27.89m; 层底埋深: 26.50~31.50m, 平均 30.12m。
- ① (6-1) 层粉质黏土: 灰色, 软塑, 局部可塑, 含少量腐植质, 稍有光泽, 无摇振反应, 干强度低, 韧性低。场区普遍分布, 厚度: 1.30~5.10m, 平均 3.44m; 层底标高: -32.48~-29.46m, 平均-31.33m; 层底埋深: 30.00~35.30m, 平均 33.56m。
- ⑫ (6-2) 层黏质粉土: 灰色,中~密实,湿~很湿,摇振反应迅速,含云母碎屑,无光泽,摇振反应迅速,干强度和韧性低。场区普遍分布,厚度:1.50~4.10m,平均2.52m;层底标高:-35.22~-33.01m,平均-33.85m;层底埋深:32.50~37.70m,平均36.08m。
- ③ (6-3) 层粉质黏土: 灰色, 软塑, 局部流塑, 含少量腐植质, 稍有光泽, 无摇振反应, 干强度低, 韧性低。场区普遍分布, 厚度: 1.40~2.90m, 平均 2.08m; 层底标高: -37.52~-35.18m, 平均-35.93m; 层底埋深: 34.60~39.80m, 平均 38.16m。
- (4) (7-1) 层粉质黏土: 青灰色, 可塑~硬塑, 含铁锰质结核及其氧化物, 有光泽, 无摇振反应, 干强度高, 韧性高。场区普遍分布, 厚度: 2.00~4.80m, 平均 3.46m; 层底标高: -40.72~-38.58m, 平均-39.46m; 层底埋深: 38.00~43.50m, 平均 41.44m。
- (15) (7-2) 层粉质黏土: 黄灰色, 可塑, 含铁锰质结核及其氧化物, 稍有光泽, 无摇振反应, 干强度中等, 韧性中。场区普遍分布, 厚度; 1.30~4.10m, 平均 2.72m; 层底标高: -43.46~40.54m, 平均-42.23m; 层底埋深: 40.90~45.60m, 平均 44.42m。
- (B) 层粉质黏土: 灰黄色, 硬塑, 含铁锰质结核及其氧化物, 有光泽, 无摇振反应, 干强度高, 韧性高。场区普遍分布, 厚度: 2.50~5.90m, 平均 3.66m; 层底标高: -47.35~-44.97m, 平均-45.89m; 层底埋深: 45.00~49.80m, 平均 48.08m。
- ① (9-1) 层粉质黏土夹黏质粉土: 灰黄色, 可塑, 含铁锰质结核及其氧化物,稍有光泽,局部略具摇振反应,干强度中等,韧性中,局部夹黏质粉土团块,

薄层厚度 0.10~0.25m。场区普遍分布,厚度: 3.20~7.70m,平均 5.72m;层底标高: -54.85~-49.56m,平均-51.64m;层底埋深: 52.00~57.00m,平均 54.12m。

18 (9-2) 层粉质黏土: 浅灰~青灰色, 可塑, 含铁锰质结核及其氧化物,稍有光泽, 无摇振反应, 干强度中等, 韧性中等。场区普遍分布, 厚度: 1.60~4.80m, 平均 2.94m; 层底标高: -56.55~-52.81m, 平均-54.58m; 层底埋深: 55.40~58.90m, 平均 57.06m。

(19) (10) 层粉质黏土: 青灰色, 可塑~硬塑, 含铁锰质结核及其氧化物, 有 光泽, 无摇振反应, 干强度高, 韧性高。该层未穿透。

土层分布及层厚统计表见表 3.1-1 所示。

表 3.1-1 引用地勘地块土层分布状况

序号	土层性质	层厚(m)	平均 (m)	地下水埋深 (m)
(1-1)	素填土	0.50~6.00	1.55	
(1-2) 层	淤泥质粉质黏土	0.50~8.50	2.56	
(2) 层	粉质黏土	0.50~5.50	3.77	
(3) 层	粉质黏土	0.50~2.70	1.65	
(4-1) 层	粉质黏土	0.80~4.20	1.51	
(4-2) 层	黏质粉土夹粉质黏土	0.60~3.60	1.8	
(5-1) 层	粉质黏土	4.20~6.30	5.55	
(5-2) 层	粉质黏土	5.90~7.90	6.89	
(5-3) 层	粉质黏土夹黏质粉土	1.80~3.20	2.47	
(5-4) 层	粉质黏土	3.70~6.10	5.08	0.12~1.69
(6-1) 层	粉质黏土	1.30~5.10	3.44	
(6-2) 层	黏质粉土	1.50~4.10	2.52	
(6-3) 层	粉质黏土	1.40~2.90	2.08	
(7-1) 层	粉质黏土	2.00~4.80	3.46	
(7-2) 层	粉质黏土	1.30~4.10	2.72	
(8) 层	粉质黏土	2.50~5.90	3.66	
(9-1) 层	粉质黏土夹黏质粉土	3.20~7.70	5.72	
(9-2) 层	粉质黏土	1.60~4.80	2.94	
(10) 层	粉质黏土	未掲	司穿	

3.1.6.2 地下水情况

(1) 地表水

拟建场区地表水系发育,地块西侧、南侧、东侧为湖庄北荡,水面标高 1.40m (测量日期: 2019.3.15), 水深为 0.20~2.20m, 河底浮淤厚为 0.10~2.10m, 河塘基底标高-1.00~-2.87m。

(2) 地下水

拟建场地在勘察深度范围内地下水主要为赋存于第四系全新统及上更新统中的浅层含水层、浅层微承压水层共 2 个含水层。分别为 (1-1) 层素填土中的潜水, (4-2) 层黏质粉土夹粉质黏土中的微承压水。现对拟建场地的浅部含水层分别评述如下。

1) 潜水

勘察期间,采用挖坑法测得拟建场地(1-1)层素填土地下水稳定水位统计值见表 11-1。其地下水类型为潜水型,地下水主要靠大气降水及地表径流补给,并随季节与气候变化,水位有升降变化,正常年变幅在 1.0m 左右,本场地 3~5 年内最高潜水水位标高 2.60m 左右,江阴市徐霞客镇历史最高潜水水位为3.40m。

2) 微承压水

主要分布于(4-2)层黏质粉土夹粉质黏土中,其中(4-2)层黏质粉土夹粉质黏土含水层土性以粉性土为主,富水性及透水性中等。 勘察期间采用钻孔采用填土套管止水测得(4-1)层黏质粉土夹粉质黏土中微承压水稳定水位(水头)标高统计值见表 11-2。该层地下水主要靠大气降水和地表水体侧向补给,正常年变幅在 0.80m 左右。

根据《徐霞客梦东方文化创意产业园住宅项目岩土工程勘察报告(无锡水文工程地质勘察院有限责任公司编制)》(2019 年 12 月)内地勘井稳定水位数据绘制的地下水位等高线图可判定该区域地下水大致流向为由北向南。由于调查地块与引用工勘报告地块之间有河流阻隔,因此地下水流向仅供参考。地下水位等高线和流向图见图 3.1-3。

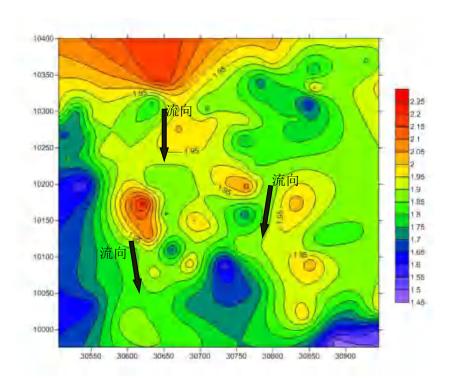


图 3.1-3 地下水位等高线及地下水流向图

3.2 敏感目标

根据《建设用地土壤污染状况调查 技术导则》(HJ25.1-2019)和《建设用地土壤环境调查评估技术指南》要求,经现场实地踏勘,江阴市徐霞客镇黄泥头路东、湖庄村路南地块及其周围 500m 范围敏感目标主要包括地表水域、重要公共场所(空置商业用房)、文物古迹等,具体分布情况见表 3.2-1 和图 3.2-1。

序号 敏感目标类型 方向 距离 敏感目标名称 1 文物古迹 西北 360m 徐霞客故居 2 重要公共场所 东北 100m 空置商业用房 3 地表水 北 10m 湖庄北荡 4 地表水 南 紧邻

表 3.2-1 周边 500m 范围主要敏感目标

图 3.2-1 项目周边 500m 范围敏感目标示意图

3.3 地块使用现状和历史

3.3.1 地块使用现状

调查地块北侧为湖庄村路,隔路为空地,地块西侧和东侧均为空地,地块南侧为地表水体。2024年2月,对江阴市徐霞客镇黄泥头路东、湖庄村路南地块进行了现场踏勘,地块目前为空地,地块内无外来填土及填埋痕迹,地块内土壤颜色无异常,现场未闻到刺激性气味,地块内无建筑垃圾、在建构筑物、生产设施及地下管线,地块现状航拍图(2024年2月1日拍摄)见图 3.3-1。

图 3.3-1 调查地块现状航拍图 (2024年2月1日)

3.3.2 地块历史沿革

通过调阅 Google earth 及天地图历史影响资料,初步获取了项目地块 2008年之后的用地影像,如表 3.3-1 所示。经与相关人员访谈可知:地块 90年代以前未扰动,90年代-2018年间,地块作宅基地和农田使用,地块内西侧有约 8户民房,民房东侧区域为农田,2018年地块内民房陆续拆除,2018年-至今,地块为空置状态。地块内历史至今无工业使用痕迹。用地历史大致可以分为三个阶段。

第一阶段(90年代之前):地块内未扰动;

第二阶段(90年代-2018年): 地块内西侧有约8户民房,民房东侧区域为农业用地,地块内东侧为空地;

第三阶段(2018年-至今):地块内民房陆续拆除,地块为闲置状态。

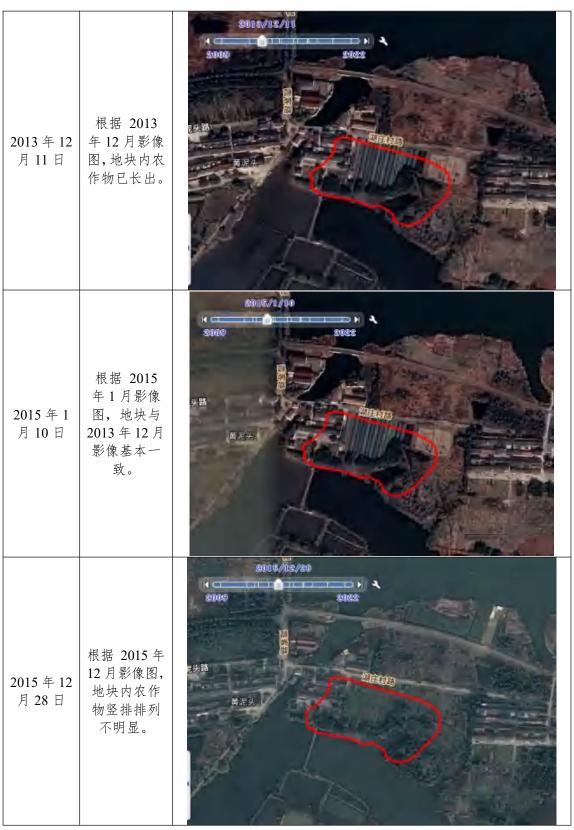

拍摄时间 地块概况 地块卫星照片 2008/6/5 N CM **→** 根据 2008 2009 年6月影像 图,地块内 西侧有约8 户民房,民 2008年6 房东侧区域 月5日 为农业用 地,地块内 东侧为空 地,有一小 块地表水 体。

表 3.3-1 地块历史影像

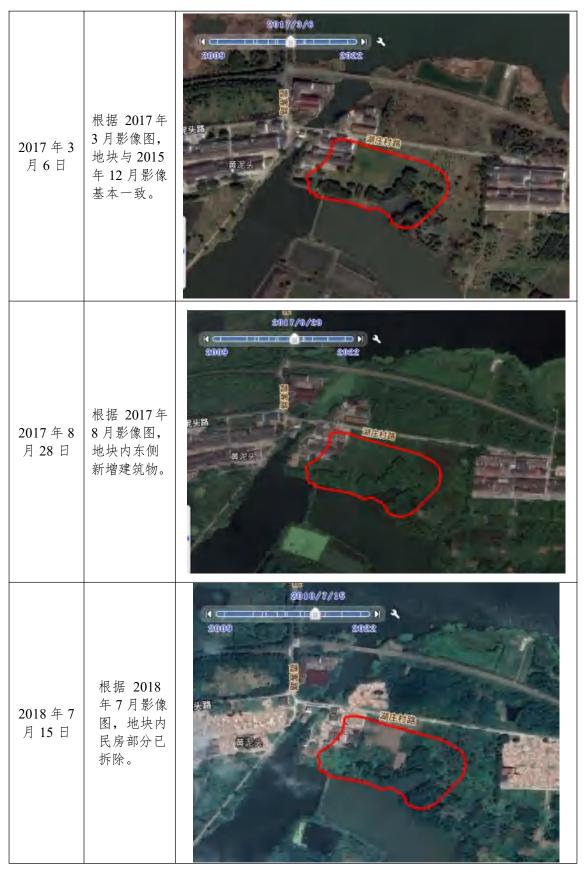

表 3.3-1 地块历史影像 (续)

表 3.3-1 地块历史影像 (续)

表 3.3-1 地块历史影像 (续)

表 3.3-1 地块历史影像 (续)



表 3.3-1 地块历史影像 (续)

3.4 相邻地块的使用现状和历史

3.4.1 相邻地块现状

调查地块北侧为湖庄村路,隔路为空地,再北侧为商业建房,目前为空置状态。地块西侧和东侧均为空地,地块南侧为地表水体,相邻地块现状图见图 3.4-1。

地块西侧为空地

地块北侧为湖庄村路, 隔路为空地, 再北侧为商业建房, 目前为空置状态。

图 3.4-1 相邻地块现状图 (2024年2月1日航拍图)

地块东侧为空地

地块南侧为地表水体

图 3.4-1 相邻地块现状图 (2024年2月1日航拍图) (续)

3.4.2 相邻地块历史

通过调阅历史影像资料,现场踏勘及人员访谈,地块四周 90 年代以前未扰动,90 年代-2018 年间,北侧、西侧和东侧为少量民房,2018 年-至今,北侧、西侧和东侧为空地,地块南侧历史至今为地表水体。地块四周历史至今无工业生产活动,相邻地块历史用地情况见表 3.4-1,相邻地块历史影像图见表 3.4-2。

相邻地块	时间	土地使用情况
南侧	历史至今	地表水体
	90 年代之前	未扰动
北侧	90 年代-2018 年	少量民房
	2018 年-至今	空地
	90 年代之前	未扰动
西侧	90 年代-2018 年	少量民房
	2018 年-至今	空地
	90 年代之前	未扰动
东侧	90 年代-2018 年	少量民房
	2018 年-至今	空地

表 3.4-1 相邻地块用地历史

表 3.4-2 相邻地块历史影像

拍摄时间	地块概况	地块卫星照片
2008年6 月5日	根据 2008 年 6 月 9 月 8 月 9 月 8 日 9 月 9 日 9 日 9 日 9 日 9 日 9 日 9 日 9 日 9	Solid

2009年12月23日	根据 2009 年 12 月影像 图,地块四周 与 2008 年 6 月影像基本 一致。	2005 特別的 以 2
2012年10 月1日	根据 2012 年 10 月影像 图,地块四周 与 2009 年 12 月影像基本 一致。	2001年100年 2001年 2
2013 年 8 月 15 日	根据 2013 年 8 月影像 图,地块四周 与 2012 年 10 月影像基本 一致。	SOURCE TO THE PARTY OF THE PART

2013 年 12 月 11 日	根据 2013 年 12 月影像图, 地块四周与 2013 年 8 月 影像基本一 致。	N 1 ま/bs/川) Entre Street 「大きずるだね」 「大きずるだね」
2015年1月10日	根据 2015 年 1 月影像图, 地块四周与 2013 年 12 月 影像基本 致。	2005 · 全有要数据
2015年12月28日	根据 2015 年 12 月影像图, 地块四周与 2015 年 1 月 影像基本 致。	2016 2022 2022 2016 2022 2016 2022 2016 2022 2016 2022 2016 2016

2017年3月6日	根据 2017 年 3 月影像图, 地块四周与 2015 年 12 月 影像基本一 致。	2019年 2019年 2019年 東京共和 東京 東京 東京 東京 東京 東京 東京 東京 東京 東京
2017年8月28日	根据 2017 年 8 月影像图, 地块四周与 2017 年 3 月 影像基本一 致。	2005 2022 (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
2018年7月15日	根据 2018 年 7 月影像 图, 地块西 侧、北侧和 东侧民房已 拆除。	2906/7/9G - 1

		从3.4-2 作物也外从关系体(头)
2018年9月24日	根据 2018 年 9 月影像 图,地块四周 与 2018 年 7 月影像基本 一致。	STORY
2019年7月29日	根据 2019 年7月影像 图,地块四周 与2018年9 月影像基本 一致。	・
2021 年 2 月 24 日	根据 2021 年 2 月影像 图,地块东北 侧有商业街 区房屋建成。	が100分 ・ 検査客が整め ・ 検査客が整め (変数) (変数) (変数) (変数) (変数) (変数)

2022 年 12 月 23 日	根据 2022 年 12 月影像 图,地块东区 侧商建设 房屋建设 加密集。	1000 中国 1000
2024年2 月1日	根据 2024 年 2 月 航拍 例 为 一	

3.5 地块利用规划

根据《江阴市徐霞客镇控制性详细规划》(2023.11.17),本次调查地块规划用地性质为文化设施用地(A2),基于规划要求,地块土壤执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值。徐霞客镇控制性详细规划部分区域放大图见图 3.5-1,规划图见图 3.5-2。

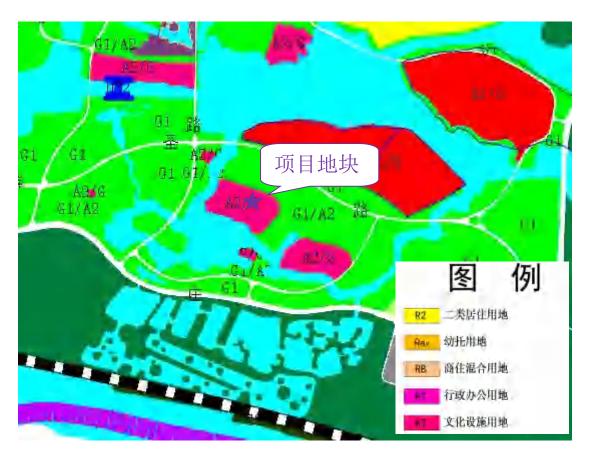


图 3.5-1 江阴市徐霞客镇控制性详细规划图 (部分区域放大)

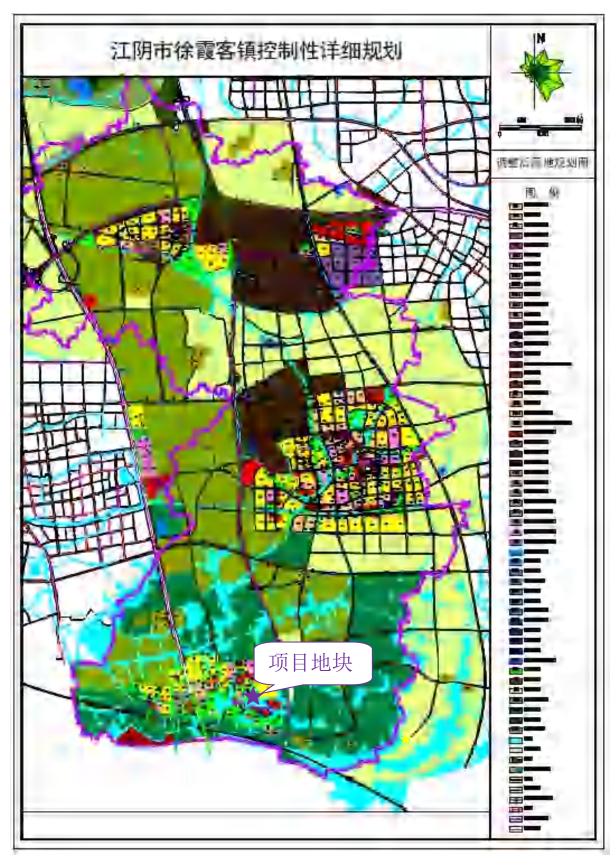


图 3.5-2 江阴市徐霞客镇控制性详细规划图

4 资料收集与分析

4.1 政府和权威机构资料

调查单位通过政府机构资料调取,网站搜索等方式,开展了政府和权威机构资料收集工作,获得了调查地块的用地规划多种资料。收据到的资料见表 4.1-1。

序号	资料收集	来源
1	江阴市徐霞客镇控制性详细规划(2023.11.17)	江阴市自然资源和规 划局
2	《徐霞客梦东方文化创意产业园住宅项目岩土工程 勘察报告(无锡水文工程地质勘察院有限责任公司编制)》(2019年 12月)	江阴市霞客湾科学城 开发建设有限公司
3	宗地图	江阴市大地测绘有限 公司

表 4.1-1 政府和权威机构资料收集信息表

4.2 地块资料收集

调查项目启动后,我单位组织人员对土壤污染状况调查的相关资料进行收集,具体收集的清单详细见表 4.2-1。

序号	资料信息	有/无	资料来源		
1	地	块利用变迁资	· F料		
1.1	地块及邻近区域的开房及活动 状况的影像图片	V	91 卫星助手卫星影像、天地图、 无人机及手机拍摄		
1.2	土地管理机构的土地登记材料	×	_		
1.3	地块的土地使用和规划资料	√	江阴市自然资源和规划局		
1.4	其它有助于评价地块污染的历 史资料及平面布置情况、地形 情况	V	环境主管部门		
1.5	地块利用变迁过程中的地块内 建设、设施等的变化情况	V	相关人员访谈		
2	地块环境资料				
2.1	地块内土壤及地下水污染记录	×	_		

表 4.2-1 地块资料收集清单

2.2	地块内危险废弃物堆放记录	×	_
2.3	地块内自然光保护区和水源地 保护区的位置关系	×	_
2.4	《徐霞客梦东方文化创意产业园住宅项目岩土工程勘察报告》(勘察编号: G2019016-1)	V	江阴市霞客湾科学城开发建设 有限公司提供(无锡水文工程地 质勘察院有限责任公司勘察)
3		地块相关记录	ŧ
3.1	产品和原辅材料清单、平面布 置图、工艺流程图	×	_
3.2	地下管线图	×	
3.3	化学品存储和使用清单、泄漏 记录、废物管理记录	×	_
3.4	环境监测数据	×	_
3.5	环境影响报告书后表、环境审 计报告	×	_
3.6	地勘报告	V	江阴市霞客湾科学城开发建设 有限公司提供(无锡水文工程地 质勘察院有限责任公司勘察)
4	由政府机关和权威机构所保存和发布的环境资料		
4.1	环境质量公告	×	_
4.2	地块内企业在政府部门相关环 境备案和批复	×	_
4.3	生态和水源保护区规划	×	_
5	地块所在区域的自然和社会经济信息		
5.1	地理位置图、地形、地貌、土 壤、水	V	网络查询
5.2	地块所在社会信息,如人口密 度和分	V	网络查询
5.3	土地利用的历史、现状和规划, 相关	V	网络查询

4.3 收集资料分析

根据江阴市徐霞客镇控制性详细规划(2023.11.17),调查地块规划用地性质为文化设施用地(A2),宗地图明确了调查地块的具体位置及地块占地面积。根据所搜集到的卫星影像分析,地块90年代以前未扰动,90年代-2018年间,地块作宅基地和农田使用,地块内西侧有约8户民房,民房东侧区域为农田,2018年地块内民房陆续拆除,2018年-至今,地块为空置状态。90年代-2018年间,北侧、西侧和东侧为少量民房,2018年-至今,北侧、西侧和东侧为空地,地块南侧历史至今为地表水体。地块内及四周历史至今无工业生产活动。

5 现场踏勘及人员访谈

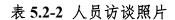
5.1 现场踏勘

项目组于 2023 年 12 月 15 日和 2024 年 2 月 1 日先后两次对该地块进行了现场踏勘工作,经现场踏勘发现,地块内土壤颜色无异常,现场未闻到刺激性气味。 2023 年 12 月现场踏勘时,地块内长满杂草,2024 年 2 月 1 日现场踏勘时,地块内大部分杂草已清除。地块西侧和东侧为空地,地块北侧的商业街区建筑物均为空置状态,具体现场照片见表 5.1-1。

表 5.1-1 现场踏勘概况

序号	踏勘结果	图片佐证	地块内相对位置
1	2023年12月15日,地块内为长满杂草。		
2	2024年2月1日, 地块内自然生长 的杂草大部分已 被清除。		() () () () () () () () () () () () () (

表5.1-1 现场踏勘概况(续)


序号	踏勘结果	图片佐证	地块内相对位置
3	2024年2月1日, 地块北侧的商业 街区建筑物均为 空置状态。		斯 東海海

5.2 人员访谈

本次访谈主要以当面交流、书面调查表,访谈人员访谈信息汇总见表 5.2-1, 人员访谈照片见表 5.2-2, 访谈内容见表 5.2-3, 人员访谈记录表详见附件 2。

访谈时间	访谈地点	访谈对象	联系电话	与调查地块关系
2023.12.15	江阴市徐霞客 镇综合执法局	李英	17766380371	环保部门管理 人员
2023.12.15	地块周边	张未	18068319278	地块周边居民
2023.12.15	地块周边	陈才香	19235088075	地块周边居民

表 5.2-1 受访对象汇总表

第 45 页 共 74 页

表 5.2-3 访谈内容

访谈时间	访谈人员	访谈内容
2023.12.15	李英	历史上那边一片没有过工业生产,90年代就已经有民房建成了,在建民房前地块未被利用过,后来到2018年,民房拆迁后,地块一直空置。地块内无生产情况,有居民种植过农作物。该场地西侧、北侧、东侧也有过民房、农田和空地,南侧一直为地表水。
2023.12.15	张未	地块内历史上没有工业企业存在,无工业固废堆放场,无工业废水排放,无地下输送管道,未发生过事故,无三废排放,土壤和地下水未受到过污染,地块西北方向450米处有徐霞客故居,东北侧500米有居民区,北侧650米有居民区,北侧900米有徐霞客公园。
2023.12.15	陈才香	历史上地块西侧为黄泥头村,房屋都是农民自建的,大概在2018年左右,全拆迁,搬走了。场地内没有过工业生产,场地中间部分由附近居民种植过农作物,主要是水稻和小麦。场地周边也是一些居民和农田或者空地,南侧地表水体,曾用作农田灌溉水,场地内没有地下管线及构置物。

5.3 资料收集、现场踏勘、人员访谈的一致性分析

通过资料收集、现场踏勘以及人员访谈对关注的地块历史用途、企业生产经营情况、地块环境污染事故、地块内暗沟、渗塘、地下管道、外来堆土、固体废物和地块周边污染源等问题进行了一致性对比分析,具体相关信息及一致性分析结果见表 5.3-1。

关注问题	资料收集	现场踏勘	人员访谈	一致性分析
地块历史用途	历史影像资料显示: 2008年-2018年,地 块内西侧为民房,中 间部分为农田,地块 内东侧为空地。2018 年民房拆迁后,地块 空置。	地块为空地	地块内历史上西侧有民宅,地块内中间部分为农田,2018年左右拆迁后,地块空置。	历史影像图和人员访谈 均表明地块内历史上西 侧有民宅,地块内中间 部分为农田,2018年左 右拆迁后,地块空置。 现场踏勘时地块确实为 空置状态。
企业生产 经营情况	历史影像图未见工 业企业	地块内不 存在相关 工业企业 活动	地块内历史上不 涉及相关工业企 业活动	历史影像图、现场踏勘 和人员访谈均表明地块 内历史上不涉及相关工 业企业活动。
地块环境污染事故	无相关记录	未发现	未发生	现场踏勘和人员访谈表 明地块内未发生过环境 污染事故。
地块内暗 沟、渗塘、地下管道等	无相关记录	未发现	地块内无工业生 产历史, 地块内 无暗沟、渗塘、 地下管道	现场踏勘和人员访谈均 表明地块内无暗沟、渗 塘、地下管道等。
外来堆土、 固体废物	历史影像图未见外 来堆土、固体废物	未发现	地块内无外来堆 土和固体废物	历史影像、现场踏勘和 人员访谈均表明地块无 外来堆土、固体废物。
地块周边污染源	地块周边无可能污 染源	地块周边 无可能污 染源	地块周边无可能 的污染源	历史影像、现场踏勘和 人员访谈均表明地块周 边无可能的污染源。

表 5.3-1 调查信息一致性分析表

5.4 小结

经资料收集、现场踏勘以及人员访谈所获得的本项目地块信息表明:地块历史上作为民宅和农田使用过,地块内地块内历史上不涉及相关工业企业活动,未发生过环境污染事故,地块内无暗沟、渗塘、地下管道等,无外来堆土、固体废物,地块周边无可能的污染源。资料收集、现场踏勘以及人员访谈所获得的地块信息基本一致,差异性较小,总体可信。

6 地块调查

为进一步了解地块真实情况,委托具有资质的检测机构江苏新锐环境监测有限公司(资质认定证书编号:221012340348),对地块内的土壤现场快速检测及地表水、底泥检测,该检测公司符合实验室分析工作的条件和相应的资质要求,资质认定证书见图 6-1。

图 6-1 检测机构资质认定证书

6.1 现场快筛

6.1.1 快筛检测方法

通过 PID、XRF 快速测定仪器对地块表层土壤的挥发性有机物和重金属进行了快速筛查,记录结果作为参考,确保踏勘过程的有效性。

本次快筛的设备型号分别为 PID(PGM7320、PGM7720)、XRF(Twex700), 具体快筛过程如下:

PID 检测:采集的土壤样品置于食品级密实塑料袋后,土壤样品体积占 1/2~2/3 自封袋体积,封袋密闭 10min 后,摇晃或振动塑料袋约 30s,静置约 2min,然后使用 PID 测试土样中挥发性有机物的含量,记录数据。

XRF 检测:采集的土壤样品置于食品级密实塑料袋后,使用 XRF 测试土样中重金属的含量,记录数据。

6.1.2 快速检测方案

《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)规定的土壤点位布设方法包括系统随机布点法、专业判断布点法、分区布点法和系统布点法。根据各布点方法的适用条件,选择系统布点法,以 20m×20m 网格,在网格内进行布点,采集表层土(0-0.2m),手工取表层土壤进行 PID、XRF 现场快筛测定。本次快筛共布设 50 个采样点 T1~T50,具体点位信息见表 6.1-1,布点图见图 6.1-1。

₩ W.I-1 工業以外派世間心									
上人仙日	点位	点位坐标							
点位编号	经度•	纬度0							
T1	120.3197821	31.70799429							
T2	120.3196990	31.70784677							
Т3	120.3196024	31.70769656							
T4	120.3194629	31.70755709							
T5	120.3194039	31.70738006							
Т6	120.3199538	31.70795674							
T7	120.3198250	31.70778508							
Т8	120.3197338	31.70764292							
Т9	120.3196400	31.70748199							

表 6.1-1 土壤快筛点位信息

L // // F	点位	坐标
点位编号	经度0	纬度°
T10	120.3195300	31.70730496
T11	120.3201040	31.70790578
T12	120.3200047	31.70774484
T13	120.3199109	31.70758659
T14	120.3198143	31.70741225
T15	120.3197204	31.70724059
T16	120.3203052	31.70783872
T17	120.3202113	31.70767242
T18	120.3201147	31.70750076
T19	120.3199940	31.70734519
T20	120.3199109	31.70719499
T21	120.3205197	31.70775557
T22	120.3204312	31.70759196
T23	120.3203239	31.70743639
T24	120.3202193	31.70725668
T25	120.3201254	31.70713330
T26	120.3207128	31.70771266
T27	120.3205908	31.70755306
T28	120.3205063	31.70738543
T29	120.3203990	31.70720840
T30	120.3203239	31.70708234
T31	120.3208577	31.70765633
T32	120.3207531	31.70747930
T33	120.3206673	31.70731837
T34	120.3205573	31.70715744
T35	120.3210240	31.70764828
T36	120.3209516	31.70747662
T37	120.3208161	31.70728082
T38	120.3206726	31.70692945
T39	120.3206136	31.70685301
T40	120.3211983	31.70757588
T41	120.3211165	31.70740554
T42	120.3210159	31.70722718
T43	120.3209274	31.70705551
T44	120.3208161	31.70690397
T45	120.3207343	31.70682350
T46	120.3213432	31.70743505

上公地口	点位坐标					
点位编号	经度 °	纬度0				
T47	120.3212909	31.70728082				
T48	120.3211769	31.70714403				
T49	120.3210508	31.70698041				
T50	120.3209489	31.70686240				

图 6.1-1 土壤快筛及地表水、底泥布点图

(1) 光离子化检测器 (PID)

- ①光离子化检测器 (PID) 是一种通用性兼选择性的检测器,可选择性的测定不同类型的化合物。本次调查采用手持式 VOCs 检测仪(PGM7320、PGM7720) 对土壤样品挥发性有机气体浓度进行 PID 现场快速检测。仪器使用当天通入标定气体进行校准较零。现场检测步骤如下:
- ①由人工采用不锈钢取样器取一定量表层土壤样于自封袋内,土壤样品占自 封袋体积的 2/3:
- ②将土壤样揉碎,放置 10 分钟后摇晃自封袋约 30 秒,再静 2 分钟后,将校准后的 PID 探头插入自封袋顶空 1/2 处,检测有机物含量;
 - ③紧闭自封袋,记录最高读数,整个过程在30分钟内完成。
 - (2) X 射线荧光光谱分析 (XRF)

XRF 因为能快速、准确的对土壤样品铅、镉、铬及其他元素进行快速检测而被广泛的应用于地质调查的野外现场探测中。本次调查过程中,采用手持式土壤分析仪 Twex700 型号 XRF 对土壤样品重金属进行现场快速检测。仪器使用当天使用前开机预热 15min ,并按照设备说明书校准仪器。现场分析检测步骤如下:

- ①由人工采用木铲取一定量土壤样于自封袋,在检测之前进行压实、平整,保证检测端与土壤表面有充分接触;
 - ②瞄准和检测。采用整合型 CMOS 摄像头和微点准直器, 检测土样样品;
 - ③在 30~120 秒内记录数值。

6.1.3 现场快筛质控

现场快筛之前,快筛设备经标准物质校准后样品快速测定,现场校准记录见表 6.1-2。

表 6.1-2 现场快速检测仪器校准记录

仪器名称和型 号	校准日期	标准物质 名称及编 号	校准内容	校准结果	允许误 <i>差</i>	校准误 差	校准结论
手持式土壤分 析仪 Twex700	2024年1 月26日 7:47	316 标准 样品块	重金属	自检成功	自检成功	自检成功	合格
手持式 VOCS 检 测仪 PGM-7320	2024年1 月26日 7:49	N2 83709193	0.0ppm	0.0ppm	±5%	0.00%	合格
手持式 VOCS 检 测仪 PGM-7720	2024年1 月26日 7:51	异丁烯 PX09002	100ppm	100ppm	±5%	0.00%	合格
手持式土壤分 析仪 Twex700	2024年1 月26日 18:04	316 标准 样品块	重金属	自检成功	自检成功	自检成功	合格
手持式 VOCS 检 测仪 PGM-7320	2024年1 月26日 18:05	N2 83709193	0.0ppm	0.0ppm	±5%	0.00%	合格
手持式 VOCS 检 测仪 PGM-7720	2024年1 月26日 18:07	异丁烯 PX09002	100ppm	100.1ppm	±5%	+0.10%	合格

6.1.4 现场快速检测照片

2024 年 1 月 26 日江苏新锐环境监测有限公司(资质认定证书编号: 221012340348)进行了现场快筛,现场采集了土壤样品后,对其进行现场快速检测,以便及时判断地块土壤是否受到污染。

现场采样及检测照片见表 6.1-3 , 具体各点位现场照片见附件 5 。

表 6.1-3 部分现场采样及检测照片

6.1.5 快速检测结果

快筛检测数据见表 6.1-4, 快筛检测结果分析见表 6.1-5。

表 6.1-4 现场快筛数据统计表

采样点位	采样深度(单	单位				Х	KRF				PID (单位: ppm)
水什杰区	位: m)	十世	砷	镉	铬	铅	汞	锌	镍	铜	
	检出限		2	2	1	1	2	1	1	1	0.1
T1	0.2	mg/kg	11.355	ND	62.09	40.76	ND	117.954	28.786	22.666	0.1
T2	0.2	mg/kg	18.454	ND	45.412	33.808	ND	86.83	26.869	35.101	0.2
Т3	0.2	mg/kg	19.543	ND	71.266	50.686	ND	101.378	30.806	39.709	0.1
T4	0.2	mg/kg	8.731	ND	59.818	24.212	ND	74.498	20.627	27.178	0.1
T5	0.2	mg/kg	9.052	ND	60.09	25.133	ND	80.12	23.699	25.202	0.2
Т6	0.2	mg/kg	14.898	ND	44.981	30.988	ND	82.393	27.297	22.157	0.1
Т7	0.2	mg/kg	13.061	ND	81.936	41.949	ND	82.688	25.707	14.823	0.2
Т8	0.2	mg/kg	16.33	ND	51.795	44.349	ND	117.339	20.093	22.558	0.2
Т9	0.2	mg/kg	9.197	ND	27.009	30.249	ND	61.797	11.666	19.797	0.2
T10	0.2	mg/kg	11.51	ND	56.789	30.375	ND	117.679	32.259	24.243	0.1
T11	0.2	mg/kg	14.798	ND	27.305	28.8	ND	81.173	24.854	25.958	0.1

采样点位	采样深度(单	单位				X	(RF				PID (单位: ppm)
木什点位	位: m)	千匹	砷	镉	铬	铅	汞	锌	镍	铜	(+ \(\pi\): ppiii)
	检出限		2	2	1	1	2	1	1	1	0.1
T12	0.2	mg/kg	13.369	ND	44.852	26.886	ND	88.164	24.156	21.752	0.1
T13	0.2	mg/kg	16.354	ND	33.669	21.702	ND	90.247	22.985	42.523	0.1
T14	0.2	mg/kg	6.56	ND	21.356	28.586	ND	47.991	10.388	20.609	0.1
T15	0.2	mg/kg	16.193	ND	43.762	35.016	ND	82.516	23.965	23.328	0.2
T16	0.2	mg/kg	10.965	ND	87.966	26.911	ND	81.829	27.776	20.591	0.1
T17	0.2	mg/kg	7.647	ND	59.46	25.211	ND	83.021	24.873	36.383	0.1
T18	0.2	mg/kg	13.326	ND	37.256	33.715	ND	79.091	23.06	27.78	0.1
T19	0.2	mg/kg	8.3	ND	50.623	24.589	ND	80.997	23.566	23.576	0.2
T20	0.2	mg/kg	9.638	ND	69.291	35.058	ND	108.394	34.786	24.36	0.2
T21	0.2	mg/kg	10.979	ND	57.289	30.69	ND	54.807	23.531	15.9	0.1
T22	0.2	mg/kg	13.396	ND	38.951	21.727	ND	83.525	26.591	28.008	0.1
T23	0.2	mg/kg	8.566	ND	48.904	29.691	ND	69.862	31.619	17.946	0.1
T24	0.2	mg/kg	9.893	ND	40.481	30.406	ND	85.883	38.486	31.046	0.1
T25	0.2	mg/kg	15.187	ND	44.957	25.645	ND	77.926	25.576	29.298	0.2
T26	0.2	mg/kg	10.032	ND	52.807	26.718	ND	73.207	32.304	25.554	0.1

采样点位	采样深度(单	単位 —				X	(RF				PID (单位: ppm)
木什点位	位: m)	丰业	砷	镉	铬	铅	汞	锌	镍	铜	
	检出限		2	2	1	1	2	1	1	1	0.1
T27	0.2	mg/kg	14.529	ND	35.813	28.566	ND	61.597	28.184	27.138	0.1
T28	0.2	mg/kg	7.232	ND	35.622	32.703	ND	92.926	26.078	33.652	0.1
T29	0.2	mg/kg	12.942	ND	55.417	33.646	ND	92.926	28.266	24.533	0.1
T30	0.2	mg/kg	12.854	ND	46.634	26.18	ND	84.676	25.322	34.198	0.1
T31	0.2	mg/kg	9.21	ND	31.967	30.924	ND	56.534	16.552	17.683	0.2
T32	0.2	mg/kg	12.58	ND	63.861	32.346	ND	79.063	25.793	23.222	0.2
T33	0.2	mg/kg	9.399	ND	48.782	29.818	ND	89.344	36.271	47.311	0.1
T34	0.2	mg/kg	19.183	ND	35.567	34.634	ND	91.25	22.547	38.118	0.1
T35	0.2	mg/kg	14.544	ND	50.787	31.195	ND	87.284	24.134	22.412	0.1
Т36	0.2	mg/kg	17.684	ND	65.663	34.468	ND	89.294	31.045	24.827	0.1
T37	0.2	mg/kg	16.181	ND	61.825	34.116	ND	109.94	22.991	29.481	0.1
T38	0.2	mg/kg	15.314	ND	42.312	27.614	ND	78.581	23.728	24.048	0.2
Т39	0.2	mg/kg	10.546	ND	73.977	32.413	ND	59.358	30.008	23.64	0.1
T40	0.2	mg/kg	9.819	ND	67.024	23.018	ND	79.455	27.576	14.694	0.1
T41	0.2	mg/kg	12.817	ND	71.206	23.881	ND	84.062	26.834	23.678	0.1

采样点位	采样深度(单	单位				Х	(RF				PID (单位: ppm)
八八 M IZ	位: m)	T 12	砷	镉	铬	铅	汞	锌	镍	铜	(+ \pi, ppm)
	检出限		2	2	1	1	2	1	1	1	0.1
T42	0.2	mg/kg	6.436	ND	61.238	19.989	ND	52.099	17.242	15.534	0.1
T43	0.2	mg/kg	7.338	ND	49.874	22.609	ND	86.813	14.704	18.198	0.1
T44	0.2	mg/kg	13.395	ND	58.449	27.874	ND	149.096	33.095	17.097	0.1
T45	0.2	mg/kg	7.308	ND	36.969	28.449	ND	101.502	22.743	18.346	0.1
T46	0.2	mg/kg	6.04	ND	33.688	22.86	ND	51.393	16.913	18.077	0.2
T47	0.2	mg/kg	11.781	ND	40.02	24.076	ND	61.979	19.226	22.913	0.1
T48	0.2	mg/kg	4.526	ND	22.777	11.148	ND	40.447	7.755	7.12	0.1
T49	0.2	mg/kg	10.366	ND	63.104	27.892	ND	130.293	31.538	38.763	0.1
T50	0.2	mg/kg	12.088	ND	65.726	26.188	ND	114.66	25.896	27.781	0.1
	标准限	值	60	65	2910	800	38	10000	900	18000	/
	超标	数	0	0	0	0	0	0	0	0	/

注:评价标准为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中2类用地 风险筛选值;铬、锌参考深 圳市地方标准《建设用地土壤污染风险筛选值和管制值》(DB 4403/T 67-2020)。

	W 011 5 KIN EVALUE VI												
्राचा ३	 试项目	单位	评价标准	最小值	最大值	对照点		超标					
7997	瓜坝日	半位	17777017年	取八恒	取入阻	最小值	最大值	数					
PID	VOCs	ppm	/	0.1	0.2	0.1	0.2	/					
	砷	mg/kg	60	4.526	19.543	5.025	18.509	0					
	镉	mg/kg	65	ND	ND	ND	ND	0					
	铬	mg/kg	2910	21.356	87.966	37.764	94.004	0					
VDE	铅	mg/kg	800	11.148	50.686	14.912	40.249	0					
XRF	汞	mg/kg	38	ND	ND	ND	ND	0					
	锌	mg/kg	10000	40.447	149.096	37.77	248.241	0					
	镍	mg/kg	900	7.755	38.486	12.155	40.55	0					

表 6.1-5 快筛检测结果分析

注:对照点检测数据来源于项目地块东侧地块(江阴市徐霞客镇湖庄村路南、黄家村西侧地块),与本项目地块相距 20m,东侧地块历史上为农田。对照点检测数据见附件 6。

7.12

47.311

13.817

49.93

0

18000

铜

mg/kg

结果显示,所有土壤样品中 PID 检出范围为 0.1~0.2ppm,未见异常; XRF 中砷 (As) 检出范围在 4.526~19.543mg/kg 之间,铬 (Cr) 检出范围在 21.356~87.966mg/kg 之间,铅 (Pb) 检出范围在 11.148~50.686mg/kg 之间,锌 (Zn) 检出范围在 40.447~149.096mg/kg 之间,镍(Ni) 检出范围在 7.755~38.486mg/kg 之间,铜 (Cu) 检出范围在 7.12~47.311mg/kg 之间。镉 (Cd) 和汞 (Hg) 均未检出。地块内 PID 读数偏小,变化幅度不大,无较大差异点位,金属快筛读数也较平稳,无异常点位;对照《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)和深圳市地方标准《建设用地土壤污染风险筛选值和管制值》(DB 4403/T 67-2020),重金属快筛读数均小于第二类用地筛选值,与对照点比较,无明显异常,可以判断土壤受污染的可能性较小。

6.2 地表水、底泥检测

地块内有面积约 1000m² 的地表水体,对地表水体采集 1 个地表水样品和 1 个底泥样品。地块南侧地表水与地块内地下水存在一定的水力联系,地块南侧布设了 1 个地表水和 1 个底泥采样点位,共采集 2 份地表水样品和 2 份底泥样品,具体点位见图 6.1-1。

6.2.1 样品检测项目及检测方法

地表水检测项目为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 中 45 项、石油烃(C₁₀-C₄₀) 和 pH 值。底泥检测指标与地 表水保持一致。检测项目分析方法分别见表 6.2-1 和表 6.2-2。

表 6.2-1 地表水样品检测项目分析方法

检测项目	检测方法
pH 值	水质 pH 值的测定 电极法 HJ 1147-2020
六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987
汞、砷	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
镉、铜、铅、镍	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014
可萃取性石油烃 (C ₁₀ -C ₄₀)	水质 可萃取性石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 HJ 894-2017
氯甲烷	水质 氯甲烷测定 气相色谱-质谱法 XR QW154-2020 4/0
挥发性有机物 (VOCs) (1,1-二氯乙烯、二氯甲烷、反式-1,2-二氯乙烯、1,1-二氯乙烷、顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯乙烷、四氯化碳、苯、1,2-二氯乙烷、甲苯、1,1,2-三氯乙烷、四氯乙烯、氯苯、1,1,1,2-四氯乙烷、乙苯、间,对-二甲苯、邻-二甲苯、苯乙烯、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷、1,4-二氯苯、1,2-二氯苯、氯乙烯、萘)	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012
半挥发性有机物(SVOCs)(苯胺、 2-氯苯酚、硝基苯)	水质 半挥发性有机物的测定 液液萃取气相色谱/质谱 法 GR QW148-2014 1/0

多环芳烃 (苯并(b)荧蒽、苯并(a) 芘、苯并(a)蒽、蔗、苯并(k)荧蒽、 茚并(1,2,3-cd)芘、二苯并(a,h)蒽)

水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法 HJ 478-2009

表 6.2-2 底泥样品检测项目分析方法

7 V V V V V V V V V V V V V V V V V V V	
检测项目	检测方法
砷、汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原 子荧光法 HJ 680-2013
镉、铜、铅、镍	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016
六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019
石油烃 (C10-C40)	土壤和沉积物 石油烃 (C ₁₀ -C ₄₀)的测定 气相色谱法 HJ 1021-2019
苯胺	土壤和沉积物 苯胺的测定 气相色谱-质谱法 XR QW329-2018 4/0
挥发性有机物(VOCs)(1,1-二 氯乙烯、二氯甲烷、反式-1,2-二 氯乙烯、1,1-二氯乙烷、顺式-1,2- 二氯乙烯、氯仿、1,1,1-三氯乙烷、 四氯化碳、苯、1,2-二氯乙烷、 三氯乙烯、1,2-二氯丙烷、甲苯、 1,1,2-三氯乙烷、四氯乙烯、氯苯、 1,1,1,2-四氯乙烷、乙苯、间,对- 二甲苯、邻-二甲苯、苯乙烯、 1,1,2,2-四氯乙烷、1,2,3-三氯丙 烷、1,4-二氯苯、1,2-二氯苯、氯 甲烷、氯乙烯)	土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱- 质谱法 HJ 605-2011
半挥发性有机物 (SVOCs) (2- 氯苯酚、硝基苯、萘、苯并 (a) 蒽、蔗、苯并 (b) 荧蒽、苯并 (k) 荧蒽、苯并 (a) 芘、茚并 (1,2,3-cd) 芘、二苯并 (a,h) 蒽)	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱 法 HJ 834-2017

6.2.2 地表水、底泥检测结果

(1) 地表水

地表水检测项目为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 中 45 项、石油烃 (C_{10} - C_{40}) 和 pH 值。检测情况分析见表 6.2-3,具体数据详见附件 6。

可萃取性石油 pH 值 监测因子 砷 铅 镍 铜 (无量纲) 烃(C₁₀-C₄₀) 标准限值 6~9 0.01 0.01 0.02 0.05 0.05 地块内地表水 样品个数 1 (个) 0.0004 0.00082 0.00027 检出值 8.4 0.00071 0.01 是否超标 否 否 否 否 否 否 地块外地表水 样品个数 1 (个) 0.00014 检出值 8.4 0.0004 0.00048 0.00070 / 是否超标 否 否 否 否 否 /

表 6.2-3 地表水检出因子统计表 (mg/L)

备注: 1) 表格中仅列出检出项目; 2) 标准限值参考《地表水质量标准》(GB 3838-2002) I 类水浓度限值; 3) 镍参照《地表水质量标准》(GB 3838-2002) 的表 3 集中式生活饮用水地表水源地特定项目标准限值进行评价; 4) 可萃取石油烃(C₁₀-C₄₀) 参照按照《地表水质量标准》(GB 3838-2002) 中石油类来评价。

结果显示: 地块内地表水 pH 值为 8.4; 样品中重金属镉、六价铬、汞未检出, 样品中砷的检出值为 0.004mg/L,铜的检出值是 0.00082mg/L,铅的检出值是 0.00027mg/L,镍的检出值是 0.00071mg/L。铜、砷、铅检出值均达到 《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。镍的检出值达到了《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。样品中可萃取性石油烃(C10-C40)检出,检出值为 0.01mg/L,检出值达到了《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。样品中 VOCs和 SVOCs均未检出,未超过《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。

地块外地表水 pH 值为 8.4; 样品中重金属镉、六价铬、汞未检出, 样品中砷的检出值为 0.004mg/L,铜的检出值是 0.00048mg/L,铅的检出值是

0.00014mg/L, 镍的检出值是 0.00070mg/L。铜、砷、铅检出值均达到 《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。镍的检出值达到了《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。样品中可萃取性石油烃(C10-C40)未检出,满足《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。样品中 VOCs 和 SVOCs 均未检出,未超过《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。

(2) 底泥

是否超

标

否

否

否

底泥检测项目为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 中 45 项、石油烃(C_{10} - C_{40}) 和 pH 值。检测情况分析见表 6.2-4, 具体数据详见附件 6。

石油烃 监测因 pH 值 砷 镉 铜 铅 汞 镍 子 (无量纲) $(C_{10}-C_{40})$ 风险筛 18000 800 900 4500 60 65 38 选值 地块内底泥 样品个 1 数(个) 检出值 7.59 7.45 0.10 23 0.296 33 818 23.8 是否超 否 否 否 否 否 否 否 否 标 地块外底泥 样品个 1 数 (个) 检出值 7.78 7.88 0.14 0.082 202 30.1 26 42

表 6.2-4 底泥检出因子统计表 (mg/L)

备注:底泥污染状况评价参照《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)中第二类用地筛选值。

否

否

否

否

否

结果显示: 地块内底泥样品其 pH 值为 7.59; 样品中重金属六价铬未检出,

重金属砷(As)检出值 7.45mg/kg ,镉检出值 0.10mg/kg ,铜检出值 23.8mg/kg ,铅检出值 23mg/kg ,汞检出值 0.296mg/kg ,镍检出值 33mg/kg ,重金属检出含量均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》

(GB36600-2018) 表 1 中第二类用地筛选值;样品中 VOCs 和 SVOCs ,均 低于检出限,未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018) 表 1 中第二类用地筛选值;样品中石油烃(C₁₀-C₄₀)检出值818mg/kg,检出值未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2 中第二类用地筛选值。

地块外底泥样品其 pH 值为 7.78; 样品中重金属六价铬未检出,重金属砷 (As) 检出值 7.88mg/kg ,镉检出值 0.14mg/kg ,铜检出值 30.1mg/kg ,铅检出值 26mg/kg ,汞检出值 0.082mg/kg ,镍检出值 42mg/kg ,重金属检出含量均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》

(GB36600-2018) 表 1 中第二类用地筛选值;样品中 VOCs 和 SVOCs ,均 低于检出限,未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018) 表 1 中第二类用地筛选值;样品中石油烃(C₁₀-C₄₀)检出值818mg/kg,检出值未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018) 表 2 中第二类用地筛选值。

6.6.3 采样检测质量控制

本次调查于 2024 年 1 月 26 日采集 2 份地表水样品和 2 份底泥样品,样品的 采集和实验室分析工作由江苏新锐环境监测有限公司负责,该公司拥有江苏省质量技术监督局颁发的检验检测机构资质认定证书,符合实验室分析工作的条件和相应资质要求。为保证和证明检测过程得到有效控制、检测结果准确可靠,需采取相应可行的质量控制措施对检测过程予以有效控制和评价。

(1) 采样质量控制

为保证在允许误差范围内获得具有代表性的样品,江苏新锐环境监测有限公司在采样的全过程中进行质量控制。

①对采样人员进行培训。采样由受过专门培训、有经验的人员承担。采样人员熟悉采样技术、懂得安全操作的有关知识和处理方法。样品的采集、制样和封

装由2名技术人员共同完成,并存留一份样品供抽检。

- ②采样工具均保证干燥、清洁,样品盛样容器为因子对应分析方法中明确的盛样容器。
- ③样品盛入容器后,在容器壁上立即贴上标签。标签内容包括:样品名称及编号;采样位置;采样日期;特征描述;采样人等。
- ④样品运输过程中,采用减震泡沫封包,防止不同样品之间的交叉污染;运输过程中盛样容器未出现倒置、倒放情况。
 - ⑤采样后采样人员填写好、保存好采样记录和采样报告。
 - ⑥采样全过程由专人负责,全程影像留痕。

(2) 样品运输质控分析

根据《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019) 的相关要求,本次调查在送样的过程中,江苏新锐环境监测有限公司在其样品保 存箱内随附了一个运输空白样,一并检测,对其完成了 VOC 项目的相关检测。

根据检测结果显示,该运输空白样 VOC 组分均显示未检出,因此可以认为本次调查在送样的过程中,基本不存在样品泄漏、交叉污染等有可能影响样品检测结果的情况发生。

(3) 实验室内部质量控制

①精密度控制

分别针对不同的检测环节(样品采集、样品制备、样品前处理和样品检测等), 实施不同的平行样品检测,以控制和评价相关检测环节或过程的精密度情况。每 批样品均应做一定比例的明码或密码平行双样。

精密度数据控制:参照各检测方法或监测技术规范。

②准确度控制

采用加标回收率检测或质控样检测等方法进行准确度控制,检测方法包括明码样和密码样。

加标回收:每批样品随机抽取 10%样品做加标回收,水样加标量相当于待测组分浓度的 0.5-2.5 倍,加标总浓度小于方法上限的 0.9 倍。待测组分浓度小于最低检出限时,按最低检出值的 3-5 倍进行加标。底泥加标量为待测组分的

0.5-1.0 倍,含量低的加 2-3 倍,加标后被测组分的总量未超出方法的测定上限。加标浓度高,体积应小,未超过原试样体积的 1%。一般样品加标回收率在90%-110%或者方法给定的范围内为合格;痕量有机污染物回收率在60%-140%为合格;有机样品浓度在 mg/L 级,回收率在70%-120%为合格;有机样品浓度在ug/L 级,回收率在50%-120%为合格。

质控样(有证标准物质):对容量法分析和不宜加标回收的项目,每批样品带质控样 1-2 个,或定期带质控样。有证标准物质在其规定范围或 95%-105%范围内为合格;已知浓度质控样在 90%-110%范围内为合格;痕量有机物在 60%-140%范围内为合格。

本次样品分析过程中地表水和底泥现场各采集 1 个平行样,实验室按照方法标准的要求进行平行样的检测,各因子实验室平行平均检查率 50%,合格率 100%;各因子加标回收平均检查率 50%,合格率 100%;全程序空白和标样均合格,所有因子总合格率均为 100%,详见表 6.2-5。

表 6.2-5 检测分析质量统计表

检测类		分析		现场	平行样			实验的	室平行			加标	回收		全程序	序空白	密码	马样	标	样	总检	总检	总合	总合
别	分析项目	样品 数	检查 数	检查 率%	合格 数	合格 率%	检查 数	检查 率%	合格 数	合格 率%	检查 数	检查 率%	合格 数	合格 率%	检查 数	合格 数	检查 数	合格数	检查 数	合格 数	查数	查 率%	格数	格 率%
地表水	pH 值	2	1	50.0	1	100	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	50.0	1	100
地表水	砷	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	1	1	/	/	1	1	5	250	5	100
地表水	镉	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	1	1	/	/	1	1	6	300	6	100
地表水	六价铬	2	1	50.0	1	100	/	/	/	/	/	/	/	/	1	1	/	/	/	/	2	100	2	100
地表水	铜	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	1	1	/	/	1	1	6	300	6	100
地表水	铅	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	1	1	/	/	1	1	6	300	6	100
地表水	汞	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	1	1	/	/	1	1	5	250	5	100
地表水	镍	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	1	1	/	/	1	1	6	300	6	100
地表水	可萃取性石油 烃(C ₁₀ -C ₄₀)	2	/	/	/	/	/	/	/	/	1	50.0	1	100	1	1	/	/	1	1	3	150	3	100
地表水	氯甲烷	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	2	2	/	/	1	1	7	350	7	100
地表水	VOCs	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	2	2	/	/	1	1	7	350	7	100
地表水	SVOCs	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	1	1	/	/	1	1	5	250	5	100
地表水	多环芳烃	2	1	50.0	1	100	/	/	/	/	1	50.0	1	100	1	1	/	/	1	1	4	200	4	100

表 6.2-5 检测分析质量统计表 (续)

		分析		现场 ^s	平行样			实验室	室平行			加标	回收		全程序	序空白	密码	马样	标	样	总检	总检	总合	总合
检测类别	分析项目	样品 数	检查 数	检查 率%	合格 数	合格 率%	检查 数	检查 率%	合格 数	合格 率%	检查 数	检查 率%	合格 数	合格 率%	检查 数	合格 数	检查 数	合格 数	检查 数	合格 数	查数	查 率%	格数	格 率%
底质 (沉积 物)	砷	2	1	50.0	1	100	1	50.0	1	100	/	/	/	/	/	/	/	/	1	1	3	150	3	100
底质 (沉积物)	镉	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质 (沉积物)	六价铬	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质 (沉积物)	铜	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质 (沉积物)	铅	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质(沉积物)	汞	2	1	50.0	1	100	1	50.0	1	100	/	/	/	/	/	/	/	/	1	1	3	150	3	100
底质 (沉积物)	镍	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质(沉积 物)	石油烃 (C ₁₀ -C ₄₀)	2	/	/	/	/	/	/	/	/	2	100	2	100	/	/	/	/	1	1	3	150	3	100
底质 (沉积物)	苯胺	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100
底质 (沉积物)	VOCs	2	1	50.0	1	100	1	50.0	1	100	2	100	2	100	2	2	/	/	1	1	7	350	7	100
底质(沉积物)	SVOCs	2	1	50.0	1	100	1	50.0	1	100	1	50.0	1	100	/	/	/	/	1	1	4	200	4	100

7 结果和分析

7.1 第一阶段土壤污染状况调查小结

根据《江阴市徐霞客镇控制性详细规划》(2023.11.17),调查地块规划用地性质为文化设施用地(A2),经资料收集、现场踏勘和人员访谈,对收集到的资料和地块污染风险进行分析,得出第一阶段调查结果:

调查地块现状:项目地块为空地,地块内有面积约 1000m² 的地表水体,地块内无外来填土及填埋痕迹,地块内土壤颜色无异常,现场未闻到刺激性气味,地块内无建筑垃圾、在建构筑物、生产设施及地下管线。

邻近地块现状:地块西侧和东侧为空地,地块北侧为湖庄村路,隔路为空地,北侧 100 米为空置商业用房,地块南侧为地表水体。

调查地块历史状况: 地块 90 年代以前未扰动, 90 年代-2018 年间, 地块作宅基地和农田使用, 地块内西侧有约 8 户民房, 民房东侧区域为农田, 2018 年地块内民房陆续拆除, 2018 年-至今, 地块为空置状态。地块内各个历史使用阶段均未进行工业开发或固体废物的处理或填埋, 无建筑垃圾及外来堆土, 无暗沟、渗坑, 没有历史管线、管道沟渠等, 调查地块历史上无潜在污染源。

邻近地块历史状况: 90 年代地以前未扰动, 90 年代-2018 年间, 北侧、西侧和东侧为少量民房; 2018 年-至今, 北侧、西侧和东侧为空地。 地块南侧历史至今为地表水体, 调查地块周边范围历史上无潜在污染源。

7.2 现场快筛测试

为了更进一步确保调查地块无污染,对调查地块土壤进行快筛及地表水和底 泥进行检测。现场快速筛查表层土壤 50 个,采集分析地表水和底泥样品各 2 个。

根据地块内土壤快筛结果, PID 挥发性有机物检出值未见异常, XRF 重金属砷、镉、铅、汞、镍和铜检测结果均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类用地筛选值, 铬和锌检测结果均低于深圳市地方标准《建设用地土壤污染风险筛选值和管制值》

(DB4403/T67-2020) 表 2 中第二类用地筛选值。

根据地表水样品检测结果,地块内地表水 pH 值为 8.4;样品中重金属镉、

六价铬、汞未检出,样品中砷的检出值为 0.004mg/L,铜的检出值是 0.00082mg/L,铅的检出值是 0.00027mg/L,镍的检出值是 0.00071mg/L。铜、砷、铅检出值均达到 《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。镍的检出值达到了《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。样品中可萃取性石油烃(C10-C40)检出,检出值为 0.01mg/L,检出值达到了《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。样品中 VOCs 和 SVOCs 均未检出,未超过《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。

地块外地表水 pH 值为 8.4; 样品中重金属镉、六价铬、汞未检出,样品中砷的检出值为 0.004mg/L,铜的检出值是 0.00048mg/L,铅的检出值是 0.00014mg/L,镍的检出值是 0.00070mg/L。铜、砷、铅检出值均达到 《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。镍的检出值达到了《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。样品中可萃取性石油烃(C10-C40)未检出,满足《地表水质量标准》(GB 3838-2002)表 1 中 I 类标准限值。样品中 VOCs 和 SVOCs 均未检出,未超过《地表水质量标准》(GB 3838-2002)的表 3 集中式生活饮用水地表水源地特定项目标准限值。

根据底泥样品检出结果, 地块内底泥样品其 pH 值为 7.59; 样品中重金属六价铬未检出, 重金属砷 (As) 检出值 7.45mg/kg , 镉检出值 0.10mg/kg , 铜检出值 23.8mg/kg , 铅检出值 23mg/kg , 汞检出值 0.296mg/kg , 镍检出值 33mg/kg , 重金属检出含量均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 1 中第二类用地筛选值; 样品中 VOCs 和 SVOCs , 均低于检出限, 未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 1 中第二类用地筛选值; 样品中石油烃(C10-C40)检出值 818mg/kg , 检出值未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2 中第二类用地筛选值。

地块外底泥样品其 pH 值为 7.78; 样品中重金属六价铬未检出,重金属砷(As)检出值 7.88mg/kg,镉检出值 0.14mg/kg,铜检出值 30.1mg/kg,铅检出值 26mg/kg,汞检出值 0.082mg/kg,镍检出值 42mg/kg,重金属检出含量

均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》

(GB36600-2018) 表 1 中第二类用地筛选值;样品中 VOCs 和 SVOCs ,均 低于检出限,未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018) 表 1 中第二类用地筛选值;样品中石油烃(C₁₀-C₄₀)检出值818mg/kg,检出值未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2 中第二类用地筛选值。

7.3 不确定性分析

本次调查以标准技术规范为依据,在分析地块资料、现场踏勘及人员访谈基础上完成本调查报告,调查过程存在以下不确定性:

- (1) 本报告是基于有限的资料、数据以及目前可获得的调查事实而作出的专业判断,卫星影像只能查询到部分时期,故地块早前的使用情况主要依靠人员访谈及收集到的资料进行判定,具有一定的不确定性。
- (2) 由于铬和锌暂无国家或江苏省地方标准,因此本报告参考深圳市地方标准《建设用地土壤污染风险筛选值和管制值》(DB 4403/T 67-2020)中相关标准限值。本次地块调查完成后评估依据和标准的变更会带来本报告结论的不确定性。另外快筛检测限受样品基体、干扰元素、测量时间等因素影响而导致结果存在一定的差异。
- (3) 本次调查结论是依据现有采集样品的检测分析得出,土壤中的污染物在自然界中随着时间推移会发生迁移转化,人为活动更会影响污染分布,无法预测未来的污染情况。

本报告仅作为江阴市徐霞客镇黄泥头路东、湖庄村路南地块后续土地开放 利用参考依据。项目组不为委托方基于其他目的使用本报告承担任何相关或连 带责任,不为任何第三方基于本报告的部分或全部内容所做决策带来后果承担 责任。

8 结论和建议

8.1 调查结论

根据 2019 年 1 月正式实施的《中华人民共和国土壤污染防治法》中第五十九条规定,建设用地用途变更为住宅、公共管理与公共服务用地的,变更前应

当按照规定进行土壤污染状况调查。为了解江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤环境质量状况,江阴市环保集团有限公司受江阴市霞客湾科学城开发建设有限公司委托,针对该地块进行土壤污染状况调查。

地块调查范围为江阴市徐霞客镇黄泥头路东、湖庄村路南地块,占地面积为17232m²(25.85亩)。根据《江阴市徐霞客镇控制性详细规划》(2023.11.17),该地块用途为公共管理与公共服务用地中的文化设施用地(A2),属于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地。

通过资料收集、现场踏勘及相关人员访谈等方式进行了第一阶段土壤污染状况调查,调查地块内及周边历史上无工业生产活动,均不涉及可能产生有毒有害物质的设施或活动,当前和历史上均无可能的污染源,地块的环境状况可以接受。依据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019),第一阶段土壤污染状况调查可以结束,不需要开展第二阶段土壤污染状况调查。该地块不属于污染地块,可作为文化设施用地(A2)开发利用。通过对地块内现场快筛及地表水和底泥的检测,进一步确保了调查结果的可行性。 因此,本次调查的江阴市徐霞客镇黄泥头路东、湖庄村路南地块满足规划用地的土壤环境质量要求,可作为文化设施用地(A2)进行开发使用。

8.2 建议

后续场地再开发利用工作时,应该遵循相关环境保护规程,保护环境和人体健康,避免产生土壤和地下水污染。结合上述调查结论,建议通过以下手段进行风险管控:

- (1) 在不改变本地块现状的条件下,建议对地块实行封闭管理,采用围栏、围墙等方式禁止人员随意进出,安排人员定期巡查,防止周边居民以及其他人员将垃圾等固体废物堆放在地块内,避免地块受到污染。
- (2)鉴于调查的不确定性,后续开发利用期间,若地块开挖过程发现土壤及地下水有异常迹象,应立即停止施工,及时上报有关管理部门进行现场查验并采取控制措施。

9附件

附件1: 地块调查范围、宗地图及土地征收文件;

附件 2: 人员访谈记录表;

附件 3: 参考岩土工程勘查报告;

附件 4: 仪器校准记录、快筛记录、现场采样记录;

附件 5: 现场照片;

附件 6: 实验室检测报告;

附件 7: 检测公司 CMA 资质认定证书;

附件 8: 质量控制记录表;

附件 9: 专家评审意见;

附件10:专家评审意见回复单。

附件1:地块调查范围、宗地图及土地征收文件

宗 地 图

宗地号: 面积: 17232(平方米)

序号	界址点号	X坐标 (米)	Y坐标 (米)	边长 (米)	界址类型
1	1	3509448. 306	40530458. 236	8. 750	
2	2	3509456. 998	40530459. 216	4, 160	
3	3	3509461.153	40530459, 361	4. 160	
4	4	3509465, 281	40530458. 863	4. 160	
5	5	3509469. 283	40530457. 733	4. 160	
6	6	3509473.063	40530456.000	4. 160	
7	7	3509476.530	40530453.704	4, 160	
8	8	3509479.601	40530450, 901	4, 160	
9	9	3509482. 202	40530447.658	21.300	
10	10	3509494, 202	40530430.065	3.840	
11	11	3509496. 084	40530426.717	3.840	
12	12	3509497. 363	40530423. 095	75. 550	
13	13	3509520. 106	40530351.048	32. 930	
14	14	3509531.841	40530320.275	4, 780	
1ā	15	3509533. 037	40530315.642	4.780	
16	16	3509533. 518	40530310.882	4. 790	
17	17	3509533. 272	40530306. 103	4.780	
18	18	3509532.306	40530301.417	4.790	
19	19	3509530, 642	40530296, 930	4.910	
20	20	3509525, 783	40530296, 208	8, 580	
21	21	3509517. 240	40530295. 415	5, 830	
22	22	3509511.539	40530294. 201	7. 240	
23	23	3509504. 938	40530291, 222	8.060	
24	24	3509498. 154	40530286.867	6. 980	
25	25	3509492, 586	40530282.650	8.640	
26	26	3509486. 312	40530276, 704	3, 540	
27	27	3509484.171	40530273. 883	3.990	
28	28	3509481.756	40530270, 703	7. 020	
29	29	3509477, 645	40530265.009	0.200	
30	30	3509477. 506	40530264. 868	0. 200	
31	31	3509477, 364	40530264, 724	5. 640	

第(1)页 总计(4)页 面积: 25.85 (亩)

打印日期: 2023-11-24 时间: 09:46:19

文件名称: 23xk1124-6

备注, 1. 本宗地采用Topcon (GPS) 卫星定位仪器及全站仪 (GTS) 仪器测量。

2. 请保管好此页, 领土地证时一起附带!

宗地号: 面积: 17232(平方米)

序号	界址点号	X坐标 (米)	Y坐标 (米)	边长 (米)	界址类型
31	31	3509477. 364	40530264.724	5. 640	
32	32	3509472. 678	40530261.578	4.810	
33	33	3509467. 912	40530260. 921	3.080	
34	34	3509464. 889	40530261.518	4. 120	
35	35	3509461. 187	40530263, 332	0.060	
36	36	3509461, 128	40530263.357	0.110	
37	37	3509461.029	40530263. 409	0.640	
38	38	3509460, 456	40530263, 689	0.600	
39	39	3509459. 898	40530263. 922	0.570	
40	40	3509459.352	40530264.096	0. 530	
41	41	3509458. 862	40530264.301	0.580	
42	42	3509458, 284	40530264, 278	1.330	
43	43	3509456, 953	40530264, 225	1.120	
44	44	3509455. 856	40530264.006	0.890	
45	45	3509454.997	40530263, 762	1.310	
46	46	3509453. 739	40530263, 403	2, 340	
47	47	3509451.422	40530263, 109	1.980	
48	48	3509449. 448	40530263. 294	0.980	
49	49	3509449. 383	40530264.274	0.310	
50	50	3509449. 378	40530264. 582	0.820	
51	51	3509449. 364	40530265, 404	0.180	
52	52	3509449. 183	40530265.397	1.780	
53	53	3509447. 404	40530265. 333	1.570	
54	54	3509445, 911	40530265, 832	0.760	
55.	55	3509445, 589	40530266. 517	3. 480	
56	56	3509445. 275	40530269. 985	1.810	
57	57	3509444. 422	40530271.582	1.290	
58	58	3509443. 816	40530272.718	0.440	
59	59	3509443, 422	40530272.909	1.200	
60	60	3509442.340	40530273, 436	1.820	
61	61	3509440. 541	40530273, 169	0.990	

第(2)页 总计(4)页

面积: 25.85 (亩)

打印日期: 2023-11-24 时间: 09:46:19

文件名称: 23xk1124-6 备注: 1.本宗地采用Topcon (GPS) 卫星定位仪器及全站仪 (GTS) 仪器测量。

2. 请保管好此页, 领土地证时一起附带!

杂地毒:

面积: 17232(平方米)

rk 8		Value (str.)	Value (at)	11202 (130	
序号	界址点号	X坐禄 (米)	Y坐标 (米)	边长 (米)	界址类型
61	61	3509440. 541	40530273.169	0.990	
62	62	3509439. 590	40530273. 436	1. 230	
63	63	3509439, 013	40530274, 524	2. 430	
64	64	3509438. 381	40530276.874	2, 760	
65	65	3509438, 551	40530279, 631	1. 460	
66	66	3509439, 686	40530280. 543	1.440	
67	67	3509441.059	40530280, 096	2. 290	
68	68	3509442, 457	40530278, 276	1.190	
69	69	3509443, 377	40530277, 514	0.810	
70	70	3509443. 932	40530278, 102	2.630	
71	71	3509444.886	40530280, 548	0.580	
72	72	3509444. 940	40530281.125	0.810	
73	73	3509444, 471	40530281.788	1.660	
74	74	3509442. 832	40530282, 080	2.010	
75	75	3509440.831	40530281. 843	1. 240	
76	76	3509439, 849	40530282. 592	3. 650	
77	77	3509438.845	40530286, 106	1.930	
78	78	3509439, 800	40530287. 787	2.610	
79	79	3509440, 587	40530290, 275	0.710	
80	80	3509440. 598	40530290. 981	0.860	
81	81	3509440, 610	40530291.844	0.400	
82	82	3509440.616	40530292, 240	0.160	
83	83	3509440. 566	40530292, 393	8. 980	
84	84	3509437.773	40530300, 924	18. 260	
85	85	3509432, 821	40530318. 498	1.210	
86	86	3509432, 493	40530319, 661	5. 290	
87	87	3509430, 706	40530324. 642	7. 020	
88	88	3509427.407	40530330, 841	7. 960	
89	89	3509422, 712	40530337. 264	3. 740	
90	90	3509421, 160	40530340, 666	2. 020	
91	91	3509420.070	40530342. 372	2. 290	

第(3)页 总计(4)页

爾积: 25.85 (會)

打印日期: 2023-11-24

时间: 09:46:19

文件名称: 23xk1124-6

备注: 1. 本杂地采用Topcon (GPS) 卫星定位仪器及全站仪 (GTS) 仪器测量。

2. 请保管好此页, 领土地证时一起附带!

宗地号: 面积: 17232(平方米)

序号	界址点号	《坐标 (米)	Y坐标 (米)	边长 (米)	界址类型
91	91	3509420, 070	40530342.372	2, 290	
92	92	3509418, 502	40530344.045	2.060	
93	93	3509417.615	40530345.908	1.760	
94	94	3509417. 859	40530347.649	2, 860	
95	95	3509418. 568	40530350. 417	0.040	
96	96	3509418. 579	40530350, 460	4. 620	
97	97	3509420, 262	40530354.766	3. 330	
98	98	3509419.738	40530358, 056	7, 120	
99	99	3509415.861	40530364.030	8. 990	
100	100	3509410.964	40530371.575	6. 120	
101	101	3509407.630	40530376.713	4. 840	
102	102	3509403.464	40530379.177	5. 470	
103	103	3509398. 140	40530380. 420	2.360	
104	104	3509396, 100	40530379, 241	0.100	
105	105	3509396, 004	40530379. 199	4.820	
106	106	3509393.079	40530383. 024	4, 490	
107	107	3509390, 660	40530386, 807	4. 490	
108	108	3509388, 905	40530390. 939	4. 490	
109	109	3509387.863	40530395. 306	4. 490	
110	110	3509387. 562	40530399.786	4. 490	
111	111	3509388. 011	40530404. 253	4. 490	
112	112	3509389, 198	40530408, 583	4. 490	
113	113	3509391.090	40530412, 655	4. 490	
114	114	3509393. 634	40530416. 355	4, 490	
115	115	3509396, 758	40530419, 580	48. 970	
116	116	3509433. 649	40530451. 780	4, 060	
117	117	3509436. 903	40530454. 212	4.060	
118	118	3509440, 485	40530456. 125	4.060	
119	119	3509444. 315	40530457, 477	4.060	

第(4)页 总计(4)页

面积: 25.85 (亩)

打印日期: 2023-11-24 时间: 09:46:19 文件名称: 23xk1124-6

备注: 1. 本宗地采用Topcon (GPS) 卫星定位仪器及全站仪 (GTS) 仪器测量。

2. 请保管好此页, 领土地证时一起附带!

江苏省人民政府

苏政地 B [2024] 14号

江苏省人民政府关于江阴市 2023 年度第 9 批次 城镇建设用地的批复

江阴市人民政府:

你市呈报的2023年度第9批次城镇建设用地呈报材料收悉。 受省政府委托用地审批权,该批次由无锡市人民政府落实和承接 审批。经审查,现批复如下:

一、同意将位于你市徐霞客镇农民集体农用地 23.9530 公顷 (耕地 6.2163 公顷)、未利用地 2.9835 公顷转为建设用地并征收 为国有,同时将位于徐霞客镇农民集体建设用地 6.4010 公顷征 收为国有。

以上共计批准建设用地 33.3375 公顷, 其中转用农用地 23.9530 公顷; 征收集体土地 33.3375 公顷。

二、请补充数量相等、质量相当的耕地,切实做好耕地补充 及其后期管护工作,落实建设占用耕地耕作层土壤剥离利用。

三、你市要依法做好征地补偿安置工作,按照新修正的《中华人民共和国土地管理法》的要求,及时足额支付补偿费用,落

实被征地农民社会保障措施。

四、请落实相关生态管控措施和大运河核心监控区管控要求,按照国家和省有关产业政策和供地政策组织供地,将供地情况按规定要求备案,并纳入国土空间规划"一张图"实施监督。

抄送: 国家自然资源督察南京局, 江苏省自然资源厅, 江阴市自然资源 和规划局。

无锡市人民政府办公室

2024年1月24日印发

江阴市2023年度第9批次城镇建设用地

(澄)地呈字[2023]第17号

				申请用	地总面积(公顷)		T 45	
编号	用地位置	用地单位	总面积	农户	相地	建设用地	未利用地	开发 用途	备注
			西 脚(7)	面积	其中耕地	是权用地	水利用地	/TI ARE	
1	江阴市徐霞 客镇北渚村 ,徐霞客村	第十三届江苏 省(无锡)园 艺博览会生态 环境提升及配 套工程项目	13. 4728	9. 0972	3, 3538	3. 0882	1. 2874	公园绿地	
2	江阴市徐馥 客镇北渚村 ,徐馥客村	第十三届江苏 省(无锡)园 艺博览会会展 设施及配套工	4. 8868	4. 3183	0. 7934	0. 4740	0. 0945	文化用地	
3	江阴市徐霞 客镇北渚村 ,徐霞客村 ,马镇村	第十三届江苏 省(无锡)园 艺博览会基础 设施配套工程	14. 9779	10. 5375	2. 0691	2, 8388	1. 6016	城镇道路用 地	
	合计		33, 3375	23.9530	6. 2163	6. 4010	2. 9835		
	折亩		500. 0600	359. 3000	93. 2400	96. 0200	44. 7500		

附件2:人员访谈记录表

土壤初步调查人员访谈记录表

地块编号:	地块名称: 江阳市徐顺穹旗美说头路东, 治园庄村路布地块
访谈者姓名: 戚彦妮	访谈时间: 2023.12.15
被访谈者姓名: 李英	工作单位:江阳广传霞客馆、绿台机次局

访谈内容:

1、请问该地块的历史变革情况如何?

历史上那一片设有过工业生产,90年代就已经有民席建成了,在建风启前土地快来搬利用过,后来到2018年,见房浙江后,地快一直重量。

2、请问该场地具体生产情况(工艺和产品)是什么?
无生产情况,有尼见种 植过水作物。

3、请描述一下该场地的周边概况

该场地面侧,北侧,东侧也有过民居, 铝用和宝地, 南侧-重为地表长。

4、请问该场地的是否有地下管线及构置物?污水管线走向,污水处 理站所在位置。

没有。

5. 波杨地北侧 湖底村路 再北侧有-高业街区,描述下积风 高业街区为 2021年前后建成的,建成后-直坐是未使用过。 被访谈者签字:

土壤初步调查人员访谈记录表

地块编号:	地块名称: 江阳市往覆客须美泥头蛤牛, 施 庄村路南地坎
访谈者姓名: 戚彦妮	访谈时间: つっょ }、(2、(5
被访读者姓名: 3年十七	工作单位: 同也 居免.

访谈内容:

1、请问该地块的历史变革情况如何?

历史上地块面似的黄泥头村,房屋都是农民自建的。 大概在2018年左右,全折止,稻段走了。

- 2、请问该场地具体生产情况(工艺和产品)是什么? 场地内 没有过工业生产,场地中问部分由附近 居民价 植过农作物,主需是水稻和小麦。
- 3、请描述一下该场地的周边概况 场地周边也是一些居民和农田, 或者是空地。 场地周边的地震水全用来, 漩 溉农田。
- 4、请问该场地的是否有地下管线及构置物?污水管线走向,污水处理站所在位置。

没有的。

被访谈者签字: 19年十二

人员访谈记录表格

地块编码	
地块名称	江阳市待覆客後黄泥头, 路春, 湖庄村路南地块:
访谈日期	20,23.12.15
	姓名: 戚彦妮
访谈人员	单位: 江阴市环保集团有限公司
	联系电话: 13906162573
	受访对象类型: □土地使用者 □企业管理人员 □企业员工 □政府管理人员
	□环保部门管理人员 □地块周边区域工作人员或居民
受访人员	姓名: 作 未 。
JC 677 C 74	单位: 1 是 集員
	联系电话: \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\
	1. 本地块历史上是否有其他工业企业存在? 口是 口否 口不确定
	若选是,企业名称是什么? 起止时间是 年至 年。
	2. 本地块内目前职工人数是多少? (仅针对在产企业提问)
	3、本地块内是否有任何正规或非正规的工业固体废物堆放场?□正规□非正规□□正规□□正规□□□□□□□□□□□□□□□□□□□□□□□□
	若此是,堆放场在哪?
	增放什么废弃物?
	4. 本地映内是否有工业废水梯放沟渠或掺坑? □是 □不确定
	若选是,排放沟渠的材料是什么?
访谈问题	是否有无硬化或防渗的情况?
67 (5C) - 3744	5. 本地块内是否有产品、原辅材料、油品的地下储罐或地下输送管道?
	□是 √公否 □不确定
	若选是,是否发生过泄漏? □是(发生过 次) □否 □不确定
	6. 本地块内是否有工业废水的地下输送管道或储存池? □是 ☑否 □不确定
	着选是,是否发生过漫漏? □是(发生过 次) √2 百 □不确定
	7. 本地块内是否曾发生过化学品泄漏事故? 或是否曾发生过其他环境污染事故?
	口是(发生过 次) 口不确定
	本地集周边邻近地块是否曾发生过化学品泄漏事故?或是否曾发生过其他环境污
	染事故?
	□是(发生过一次) 121否 □不确定

是否否有有 是是否否否否否否否否否否否不可 10.本地域 11.本地域 12.本地域 14.本地域 15.本中式饮 装有 16.本地域	度气排放? 爱气排放? 爱气作组现验管。 在他现实的一个生? 要放水产生? 要水水产生。 要水水产生。 要水水产生。 要水水产生。 要水水产生。 要水水产生。 要水水产生。 一种,是不是一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种,一种。 一种,一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种,一种。 一种。 一种,一种。 一种。 一种,一种。 一种。 一种。 一种。 一种,一种。 一种。 一种。 一种。 一种。 一种。 一种。 一种。 一种。 一种。	□是 □是是 □是 □是 □是 □是 □ □ 是 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种	☑否 ☑否 ☑否 ☑否 ☑任味? (仅针对分		☑答	□不确定 □不确定 □不确定 □不确定 □不确定 □不确定
是否有 9. 是否有 是否否有 10. 本地 11. 本地 12. 本地 13. 本地 14. 本地 15. 本地 第中式饮 游问题 若说 16. 本地	废气治理设施? 工业废水产生? 废水在线监测装置? 废水在线监测装置? 快内是否曾闻到过由土 快内是否有遗留的危险 快内是否有遗留的危险 快内地下水是否曾受到过 快内地下水是否曾受到过 快内地下水是否曾受到过	□是 □□是是 □□发的异常 行物,是 定数,是 定数,是 定数,是 定数,是 定数,是 定数,是 定数,是 定数	☑否 ☑否 ☑否 核气味? (仅针对方	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Q杏 问) ☑杏 ☑杏	□不确定□不确定□不确定
9. 是否有 是否否有 10. 本地 11. 本地 12. 本地 14. 本地 15. 本地 第中式饮 访谈问题 若选有 16. 本地	工业废水产生? 发水在线监测装置? 废水治理设施? 快内是否曾闻到过由土 快内是否有遗留的危险 快内是否有遗留的危险 快内地下水是否曾受到过 快内地下水是否曾受到过 快周边 1km 范围内是否用水水源地、饮用水	□是 □是是 □是 □是 □是 □是 □ □ 是 一种 一种 一种 一种 一种 一种 一种 一种 一种 一种	20否 20否 这个一个 这个一个 这个一个 这个一个 这个一个 这个一个 是一个一个 是一个一个 是一个一个 是一个一个一个 是一个 是	□ 不确定 □ 不不确定 □ 下不可是 □ 上是 □ 上是 □ 上是 区 区 医院、	Q杏 问) ☑杏 ☑杏	□不确定 □不确定 □不确定 □不确定
是否有 10. 本地域 11. 本地域 12. 本地域 13. 本地域 14. 本地域 15. 本地域 第中式饮 游谈问题 若选有 16. 本地域	要水在线监测装置? 废水治理设施? 快内是否曾闻到过由土 快内是否有遗留的危险 快内是否有遗留的危险 快内上壤是否曾受到过 快内地下水是否曾受到过 快周边 1km 范围内是否用水水源地、饮用水	口是 口足 壞散发的异常 行利用处置? 废物堆存? 污染? 过污染?	27否 (27否 (仅针对方 学校、居民	□不确定 □不确定 □本确定 □上是 □□上是 □□上是 □□上是 □□上是 □□に □□に □□に □□に □□に □□に □□に □□に □□に □□	Q杏 问) ☑杏 ☑杏	□不确定 □不确定 □不确定 □不确定
是否有 10. 本地 11. 本地 12. 本地 12. 本地 12. 本地 14. 本地 15. 和	废水治理设施? 中内是否曾闻到过由土 中内危险废物是否曾自 中内是否有遗留的危险 中内土壤是否曾受到过 中内地下水是否曾受到过 中周边 1km 范围内是否 用水水源地、饮用水	口足 壞敵发的异常 行利用处置? 废物堆存? 污染? 过污染?	(Z否 (仅针对: 学校、居民	□不确定 □是 □是 □是 □是 □是 □是 □是 □	Q杏 问) ☑杏 ☑杏	□不确定 □不确定 □不确定 □不确定
10. 本地 11. 本地 12. 本地 12. 本地 13. 本地 14. 本地 15. 本社 15. 和 15.	快內是否曾闻到过由土 快內危险废物是否曾自 快內是否有適留的危险 快內土壤是否曾受到过 快內地下水是否曾受到过 快內地下水是否曾受到 中周边 1km 范围内是否 用水水源地、饮用水	壞散发的异常 行利用处置? 废物堆存? 污染? 过污染?	的气味? (仅针对力 学校、居民	□是 □是 ○□是 □□是 □□是 □ (区)、(区)(K)、(区)(K)	Q杏 问) ☑杏 ☑杏	□不确定 □不确定 □不确定 □不确定
11. 本地与 12. 本地与 13. 本地与 14. 本地与 15. 本地与 集中式饮 装许式饮	內危险废物是否曾自 內是否有適留的危险 內土壤是否曾受到过 內地下水是否曾受到 內地下水是否曾受到 內地下水是否曾受到 內地下水是不曾受到	行利用处置? 废物堆存? 污染? 过污染?	(仅针对分 学校、居民	□是 (闭企业提 □是 □是 □是 区、医院、	Q杏 问) ☑杏 ☑杏	□不确定 □不确定 □不确定 □不确定
11. 本地 12. 本地 13. 本地 14. 本地 15. 和北 1	內危险废物是否曾自 內是否有適留的危险 內土壤是否曾受到过 內地下水是否曾受到 內地下水是否曾受到 內地下水是否曾受到 內地下水是不曾受到	行利用处置? 废物堆存? 污染? 过污染?	(仅针对分 学校、居民	使闭企业提 □是 □是 □是 区、医院、	问) 包括 包括 包括	□不确定 □不确定 □不确定
12. 本地域 13. 本地域 14. 本地域 15. 本地域 集中式饮 苏谈问题	央内是否有遗留的危险 央内土壤是否曾受到过 央内地下水是否曾受到 使周边 1km 范围内是否 用水水源地、饮用水;	度物堆存? 污染? 过污染? 系有幼儿园、等	(仅针对:	□是 □是 □是 区、医院、	☑答	□不确定 □不确定
13. 本地等 14. 本地等 15. 本地等 集中式饮 芳谈问题	e内土壤是否曾受到过 e内地下水是否曾受到 e周边 1km 范围内是否 用水水源地、饮用水;	污染? 过污染? ?有幼儿园、\$		□是 □是 区、医院、	☑杏 ②杏	□不确定 □不确定
14. 本地等 15. 本地等 集中式饮 访谈问题	收内地下水是否曾受到 收周边 1km 范围内是否 用水水源地、饮用水;	过污染? 看幼儿园、\$		□是 区、医院、	Q含	口不确定
14. 本地等 15. 本地等 集中式饮 方谈问题	收内地下水是否曾受到 收周边 1km 范围内是否 用水水源地、饮用水;	过污染? 看幼儿园、\$		区、医院、		
15. 本地等 集中式饮 访谈问题	、周边 1km 范围内是否 用水水源地、饮用水;	有幼儿园、宝			自然保护	色区、 水田
集中式飲 方谈问题	用水水源地、饮用水					LEV WHY
方读问题		/	-1 The latter 4 44			
若有	是,敏感用地类型是			₩ 是	口杏	□不确定
若有 16. 本地!	NE, WIGHTING 24 22 74	什么? 距离有	多远产华	50米.有	- 15 D Lin	R
16. 本地!	农田,种植农作物种:		事化	500年 有	The second second	化公本有
- ' - '	表周边 ikm 范围内是否		口是	M700半,标 □ □ 否	· 作品名	Control of the Contro
TMC Adds	是,请描述水井的位!		<u>_</u>	000		
有坯	定,明确在小开的位。 距离有多远?	-				
	水井的用途?					
	是否发生过水体	粗勒 新色龙	存储品徵:	等得鱼?	□鬼 □?	5 口术确定
	是否观察到水体			□否	□不确	
						~
	《地下水用途是什么?				-	en contacto
18. 本企	业地块内是否曾开展运				50000000	
		土地下水环境			是 ☑否	日不确定
		あ地环境调查				_
	白是(口正在	生开展 口己	经完成)	VZ吾	□不确	定
19. 其他	土壤或地下水污染相	关疑何。				

徐霞客梦东方文化创意产业园住宅项目 岩土工程勘察报告

勘察编号: G2019016-1

勘察阶段: 详细勘察

核: 李勇 李勇

专业负责人:蒋绍勤

定: 王军培

法定代表人:王 振

〈勘察证书等级:建设部甲级 编号: B132045050〉

无锡水文工程地质勘察院有限责任公司

二〇一九年十二月

目 录

文字部分

一、前言

- 1.1 工程概况
- 1.2 勘察目的、任务及要求
- 1.3 勘察依据
- 1.4 岩土工程勘察等级
- 1.5 勘察方法及勘察工作量
- 1.6 高程系统及引测依据

二、 场地工程地质条件

- 2.1 地形地貌
- 2.2气象及水文条件
- 2.3 区域地质条件
- 2.4 地基土的构成与特征
- 2.5 地基土的物理力学性质指标
- 2.6 不良地质作用及特殊性岩土

三、 水文地质条件

- 3.1 地表水
- 3.2 地下水
- 3.3 腐蚀性评价

四、 场地类别及地震效应

- 4.1 评价依据及标准
- 4.2 区域构造及地震
- 4.3 建筑的场地类别
- 4.4 场地地段划分
- 4.5 地震动参数
- 4.6 场地饱和砂(粉)土液化判别 五、 岩土工程分析与评价
- 5.1 场地稳定性评价
- 5.2 天然地基
- 5.3 桩基础
- 5.4 基坑工程

六、 结论及建议

- 6.1 结论
- 6.2 建议

图表部分

编号	附 图	
1	勘探点一览表	17
2	物理力学性质指标统计表	4
3	图例	1
4	建筑物与勘探点平面位置图	2
5	工程地质剖面图	160
6	钻孔柱状图	118
7	静力触探单孔曲线柱状图	29
8	综合固结试验成果图	4
9	土工试验成果报告表	65
10	分层土工试验成果报告表	65
11	标准贯入试验统计表	4
12	三轴压缩试验成果图	48
13	高压固结试验成果图	3
14	水质、易溶盐分析报告表	6
15	无侧限抗压强度试验轴向应变应力关系曲线	2
16	波速测试报告	1 份

一、前言

1.1 工程概况

任务来源:受天茂文化发展(江阴)有限公司的委托,我院对其拟建江阴市徐霞客项目进行岩土 工程详细勘察工作,为施工图设计提供依据。

地理位置: 拟建场地位于江阴市徐霞客镇,锡澄高速西侧、X307 路南侧、中国徐霞客旅游博物馆东侧,交通便利,地理位置优越。

拟建建筑物性质: 拟建工程主要由 20 幢 15~18 (-1 层) 层住宅楼、69 幢 2 层别墅、1 幢 2~3 层幼儿园、7 幢 1 层配电室、开关站、3 幢 1 层商业和 1 个地下 1 层大地下车库。总建设用地面积 205656.84m²,总建筑面积:348277.56m²,其中地上建筑面积 267105.50 m²,地下建筑面积81172.06 m²。本工程建成后室外地面标高为 3.90m~4.10m,拟建工程周边道路标高约 4.00~4.50m。据甲方、设计院提供的建筑物平面图,本次详细勘察的建筑物性质列于表 1。

建筑物	一览表
姓州10	1111

表 1

楼号	地上 层数	地下 层数	建筑高度 (m)	底层±0.00 黄 海标高(m)	单柱荷载 KN	结构类型	基础形式
B1#-B20# 高层住宅楼	15F~ 18F	1F	43.80~ 52.50	4. 20	2000	剪力墙结构	桩筏基础
A1#-A69# 2 层别墅	2F	局部 1F	6, 90	4. 30	800	框架结构	天然地基 或桩基础
C1#幼儿园	2F	/	12, 55	4. 30	800	框架结构	天然地基 或桩基础
S1-S3 商业	1F	1	4. 50	4. 30	800	框架结构	天然地基
P1#-P7#配电 室、开关站	1F	1	4. 00	4. 30	600	框架结构	天然地基
地下车库	1	1F	-3.60	覆土 1,20	2800	框架结构	桩筏基础

注: 拟建 B1#~B20#住宅楼±0.00 取 4.20m, 室外地面标高为 3.90m~4.10m。其它拟建物±0.00 取 4.30m。 地下车库位于 B1#~B20#住宅楼下部及之间绿地中,根据设计提供资料,住宅楼主体结构与地下车库主体结构在结构上采用后浇带连接。

1.2 勘察目的、任务及要求

本次勘察是施工图设计阶段岩土工程详细勘察,其目的是为拟建建筑物施工图设计提供详细的岩土工程资料和设计所需的岩土技术参数,具体的任务、要求如下:

- (1) 查明不良地质作用的类型、成因、分布范围及发展趋势和危害程度,提出整治方案的建议。
- (2) 查明建筑范围内岩土层的类型、深度、分布、工程特性,分析和评价地基稳定性、均匀性 和地基承载力特征值。
 - (3) 查明建筑范围内埋藏的河道、沟浜、墓穴、防空洞等对工程不利的埋藏物。
 - (4) 查明地下水的埋藏条件,提供地下水位及其变化幅度;评价水对建筑材料的腐蚀性。
 - (5) 划分建筑场地类别,并对饱和砂土及粉土进行液化判别。
 - (6)论证采用天然地基基础形式的可行性,对持力层选择、基础埋深等提出建议。
- (7)对桩基类型、适宜性、持力层选择提出建议;提供桩基设计参数和变形参数;对沉桩可行性、施工时对环境的影响及桩基施工应注意的问题提出意见。
 - (8)提供地下室的设计所需岩土参数,并对施工方案提出建议。

1.3 勘察依据的技术标准

(1)《岩土工程勘察规范》	(GB50021-2001) (2009年版);
(2)《岩土工程勘察规范》	(DGJ32/TJ208-2016);
(3)《岩土工程勘察安全规范》	(GB50585-2010);
(4)《高层建筑岩土工程勘察标准》	(JGJ72-2017);
(5)《软土地区岩土工程勘察规程》	(JGJ83-2011);
(6)《建筑地基基础设计规范》	(GB50007-2011);
(7)《中国地震动参数区划图》	(GB18306-2015);
(8)《建筑抗震设计规范》	(GB50011-2010) (2016年版);
(9)《建筑工程抗震设防分类标准》	(GB50223-2008);
(10)《建筑桩基技术规范》	(JGJ94-2008);
(11)《预应力混凝土管桩基础技术规范》	(DGJ32/TJ109-2010);
(12)《建筑地基处理技术规范》	(JGJ79-2012);
(13)《建筑基坑支护技术规程》	(JGJ120-2012);
(14)《建筑工程地质勘探与取样技术规程》	(JGJ/T87-2012);
(15)《土工试验方法标准》	(GB/T50123-1999);
(16)《静力触探技术标准》	(CECS04: 88);

(17) 《房屋建筑和市政基础设施工程勘察文件编制深度规定》

(2010年版):

(18) 甲方及设计院提供的建筑物平面位置图及勘察设计要求说明

1.4 岩土工程勘察等级

岩土工程勘察等级根据《岩土工程勘察规范》(GB50021-2001)(2009 年版)第3.1,1~3,1.4 条规定;地基基础设计等级根据《建筑地基基础设计规范》(GB50007-2011)表3.0.1条规定;桩基设计等级根据《建筑桩基技术规范》(JGJ94-2008)3.1.2条规定;抗震设防类别根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)及《建筑工程抗震设防分类标准》(GB50223-2008)规定。综合分析列于表2。

AND THE RESERVE	and the second of the second o	The state of the s
助褒堃奶	抽其其神设计垒纫	桩基设计等级及抗震设防类别
グリカマ マーシス >	THE SECTION OF THE STATE OF THE	1/1 XIS VY VI 3 F 5/V /X 1/I R5 VY P/I 5/5 T/I

表 2

楼号	地上 层数	地下 层数	工程重要 性等级	场地 等级	勘察等级	地基基础 设计等级	桩基设计等级	抗震设防类别
B1#~B20#住宅 楼	15F~ 18F	iF	二级	二级	甲级	甲级	甲级	标准设防类(丙类)
A1#-A69#别墅	2F	1	二级	二级	乙级	乙级	乙级	标准设防类 (丙类)
C1#幼儿园	2F	1	二级	二级	乙级	乙级	乙级	重点设防类 (乙类)
商业 S1-S3	1F	1	二级	二级	乙级	乙级	1	标准设防类(丙类)
配电室 P1-P7	1F	1F/无	二级	二级	乙级	乙级	1	标准设防类 (丙类)
地下车库	1	IF	二级	二级	甲级	甲级	甲级	标准设防类(丙类)

按《建筑基坑支护技术规程》(JGJ120-2012)表 3.1.3 及《高层建筑岩土工程勘察标准》(JGJ72-2017)表 8.7.2 综合判定,建议本工程地下车库基坑支护结构的安全等级为二级。

1.5 勘察方法及勘察工作量

1.5.1 勘察工作量布置

根据《岩土工程勘察规范》(GB50021-2001)(2009年版)第4.1.11~4.1.20条、《岩土工程勘察规范》(DGJ32/TJ208-2016)有关规定及建筑物性质,并结合我院邻近场地的土层资料综合确定本次勘探孔孔深及孔距,勘探孔按建筑物周边线及角点布孔,B1#~B20#住宅楼控制性孔设计孔深60.0m左右,一般性孔设计孔深40.0m左右;A1#~A58#别墅控制性孔设计孔深15.0~25.0m,一般性孔设计孔深12.0~25.0m;纯地下车库勘探孔设计孔深25.0m;基坑外围调查孔机钻孔设计孔深12.0m,静力触探孔设计孔深10.0m。实际施工时,根据现场土层情况,部分勘探孔孔深作了适当调整,软土部位基坑勘探孔深度不少于基坑深度的3倍且穿越了软土层。天然地基场地孔距

均小于 25.0m, 桩基勘探点间距 10.2~26.6m 左右, 基坑外围调查孔勘探点间距控制在 30.0m。 1.5.2 勘察方法

本次勘察我院采用机钻孔取上、标准贯入试验、静力触探试验(单桥、双桥)以及室内土工试验相结合的方法进行勘察工作。

- (1)机钻孔: 野外施工采用 5 台 GXY-1 型钻机,上部采用钢护筒护壁,钻进时采用泥浆护壁措施,采用螺纹钻头钻进和岩芯管钻进,回次进尺控制在 2.0m 左右,采取率不低于 80%。原状土取样方法:可、硬塑黏性土采用普通式取土器采取土样,软土采用薄壁取土器采取,及时封蜡,原状样质量 I ~ II 级。钻探操作严格执行现行标准《建筑工程地质勘探与取样技术规程》(JGJ/T87-2012)。
- (2)标准贯入试验:标准贯入试验贯入器规格与操作方法符合 GB50021-2001 标准,采用导向杆变径自动脱钩的自由落锤法,锤重 63.5kg,落距 76cm,探杆直径 42mm,标准贯入每贯入 30cm 为一测点,试验满足国家规范标准。
- (3) 静力触探: 单桥采用 2 台 KE-U310 型自动记录式静力触探仪及 8T 液压式静力触探机完成,单桥探头,锥尖面积 10 cm²; 双桥采用 3 台 KE-2103 型静探微机及 15T 液压式静力触探机完成,双桥探头,锥尖面积 15 cm²。贯入速率均为 1.2 m/min。
 - (4)小口径麻花钻:采用1台小口径麻花钻,以探清浅部软土、填土范围,回次进尺0.5m。
- (5) 波速测试:采用单孔检测法,测试时要求测试孔垂直,孔壁光滑,激振面应紧贴地面,测绳深度标记准确,测试仪器处于正常工作状态,测点的垂直距离采用 1m,并自下而上测试,测定上层的剪切波速具体原理、方法见波速测试报告。
- (6) 现场注水试验: 根据相关规范规定, 本次勘察在本场地内布置了两个注水试验段(2#和5#), 并按土层及其渗透性分段封闭进行。地下水水位以下的饱和土注水试验采用《水利水电工程注水规程》(SL345-2007)式 6.3.1进行计算。并按照相关规范要求观测注水量、注水高度及其随时间的水位变化。注水试验前应观测地下水位作为计算依据, 观测时间间隔 5min, 连续 2 次观测变幅小于 5cm/min 时刻结束。降水头注水试验中应进行管中水位下降速度观测, 开始观测间隔为 5min观测 5 次, 之后为 10min 观测 3 次, 最后根据水头下降速度, 一般按 30min 间隔进行。
- (7) 土工试验:室内试验为取得各土层的物理性质指标,对采取的土样进行含水率、比重、重度、液限、塑限试验;为取得土的力学指标,进行高压固结试验、常规固结试验、剪切试验及三

轴压缩试验,对上部软土进行了灵敏度试验。所有试验均严格按《土工试验方法标准》 (GB/T50123-1999)进行,其中液、塑限采用液塑限联合测定仪法,剪切试验采用直剪快剪 (q) 和直剪固结快剪 (Cq) 两种,三轴压缩试验采用不固结不排水剪 (UU);固结试验为自然状态下,最大荷载加压至 3200KPa,)

颗粒分析采用筛分法及比重计分析法,渗透试验采用变水头法。

(8)水质(土的易溶盐)分析:采用挖坑法在机钻孔旁取4组潜水水样、3组承压水水样与3组土样和2组河水水样,分别进行水质化验和易溶盐试验,水质分析为均为简分析及侵蚀CO₂分析,土质分析为滴定法分析。

1.5.3 勘察工作量完成情况

钻孔测量

本次勘察外业时间为 2019 年 3 月 14 日~2019 年 3 月 28 日,室内土工试验于 2019 年 4 月 6 日完成,并提交土工试验成果报告,室内资料整理 2019 年 4 月 1 日开始。后由于方案多次变更,于 2019 年 5 月 16 日~2019 年 5 月 17 日、2019 年 6 月 15 日、2019 年 9 月 30 日进行多次补充勘察。于 2019 年 11 月 14 日提交岩土工程详勘报告。本报告编制时使用的软件为《华宁岩土工程勘察软件》。

本次勘察完成工作量: 共完成勘探孔 610 个, 其中取土、标贯孔 168 个, 鉴别孔 15 个, 静力 触探孔 334 个, 小口径麻花钻 93 个, 水质分析 9 件, 易溶盐分析 3 件。工作量汇总见表 3 和表 4。

类 别	孔数 (个)	深度范围 (米)	总进尺 (米)	原状样 (件)	扰动样 (件)	标贯 (次)	水样 (件)	易溶盐(件)
取土、标贯孔	168	15.0~60.50	5177. 50	1931	6	162	9	3
鉴别孔	15	15. 0~20. 0	225.00					
静力触探孔	334	12.0~60.0	8728. 00					
小口径麻花钻	93	2.0~7.0	412.00					
波速试验孔	28	20.0	560.00					

野外完成工作量汇总表

表 3

注: S1~S93 为查明填埋鱼塘及(2) 层淤泥质粉质黏土的分布和厚度布置的小口径麻花钻孔。

室内土工试验完成工作量汇总表

表 4

常规物理试验(组)	压缩试验(项)	高压固结试验 (项)	三轴剪切(UU)(组)	直剪固结快剪(组)	直剪快剪(组)	渗透试验(项)	颗粒分析(项)	有机质(项)	灵敏度(项)	水土 分析 (件)
1933	1869	51	162	48	1658	102	190	9	9	9+3

1.6 建筑物定位及高程引测

本次各钻孔的位置是根据建设单位提供的电子图上江阴城市坐标系统,采用动态 GPS 放孔,勘探孔测放根据甲方提供的水准点(KZ6: X=10087.986, Y=30540.149, H=3.14)为基准,我院提供 1985 国家高程系统,进行孔口标高测定,测量闭合差满足精度要求。

二、场地工程地质条件

2.1 地形地貌

拟建场地地貌属长江下游冲积平原。拟建场地西北部为厂房,已搬迁,东北部为耕地,勘察期间鱼塘局部已回填,拟建场地地势较平整,地面标高一般在 2.56~4.33m 之间。

2.2气象及水文条件

江阴地区的气候属亚热带北纬湿润季风区,具有气候温和、雨量充沛、四季分明、阳光充足、 无霜期长、长江无冰冻等特点。常年主导风为东南风,平均风速为 3.6 米/秒,历年最大风速为 20 米/秒。年平均气温 15.2°,近年最低气温-6°,最高气温 41°,年平均降雨量为 1025.6 毫米, 年平均气压为 1016 毫帕,年平均相对湿度为 67%。

本区属亚热带湿润季风气候区,浅部地下水主要为潜水。潜水主要分布于(1-1)层素填土中,补给来源主要为大气降水,具有季节性变化,排泄于自然蒸发,其水位受大气降水影响明显。

根据江阴市区域水文资料,徐霞客镇历史最高水位为 3.19m,本场地 3~5 年内最高潜水水位标高 2.60m 左右。

拟建场区地表水系发育,地块西侧、南侧、东侧为湖庄北荡,水面标高 1.40m (测量日期: 2019.3.15),水深为 0.20~3.20m,河底浮淤厚为 0.10~2.10m,河塘基底标高-1.00~-2.87m。 对本工程基坑施工有一定的影响。

2.3 区域地质条件

据有关资料表明,江阴位于扬子断块区的江南断褶带内,由晚元古代的变质基底和震旦纪以后的沉积盖层组成。江阴位于常澄中断束的东北端,即称之为江阴断褶带,北西侧为申港中断凹陷,南东侧为青阳-锦丰中断凹陷,在构造形态上表现为断褶隆起,其边界受断裂所控制,常澄中断束带总体构造线方向为北东至北东东向,以泥盆系茅山群及三迭系青龙群为核部,分别组成了本区

内的江阴复背斜三个构造带。江阴复背斜为一复背斜构造带,轴部在江阴香山、凤凰山、澄江镇一线,走向由 NE450 逐渐变为 NE650,呈略向 NW 凸起的 NEE 向弧形展布。复式背斜两翼产状变化大,北西翼陡,倾角一般在 250—600;南东翼较缓,倾角 200-400。本区内的第四纪沉积物受基岩构造、长江河道的变迁及海平面的升降控制,可分为长江冲海积平原和山前残积两大类,本场地的第四纪沉积物属长江冲海积平原。

2.4 地基土的构成与特征

根据本次勘察所揭露的地层资料分析, 拟建场地 60.50m 深度范围内地层为第四系全新统、更新统沉积物,主要由素填土、淤泥质粉质黏土、粉质黏土、粉土等组成,按其沉积年代、成因类型及其物理力学性质的差异,可划分成 19 个主要层次;各地基土层的分布规律详见"工程地质剖面图",其特征描述如下:

- 1. (1-1) 层素填土: 杂色, 松散,湿,主要成分为粉质黏土,含大量植物根茎,在拟建场地西北部为厂房拆迁,局部为杂填土和建筑垃圾。厚度:0.50~6.00m,平均1.55m;层底标高:-3.36~2.46m,平均0.78m;层底埋深:0.50~6.00m,平均1.55m。
- 2. (1-2) 层淤泥质粉质黏土: 灰色,流塑,局部软塑,含少量有机质(平均值 3.5%)及腐植物,稍有光泽,无摇振反应,干强度低,韧性低。场区局部分布,厚度:0.50~8.50m,平均 2.56m;层底标高:-7.96~-0.91m,平均-3.24m;层底埋深:0.50~9.60m,平均 3.42m。
- 3. (2)层粉质黏土:灰黄色,可塑~硬塑,含铁锰质结核及其氧化物,有光泽,无摇振反应,干强度高,韧性高。场区局部分布,在河塘、软土地段缺失或变薄,厚度:0.50~5.50m,平均3.77m;层底标高:-3.83~-2.27m,平均-3.10m;层底埋深:2.40~6.60m,平均5.38m。
- 4. (3) 层粉质黏土: 灰黄色,可塑,含铁锰质结核及其氧化物,稍有光泽,无摇振反应,干强度中等,韧性中等。场区局部分布,在河塘地段缺失或变薄,厚度:0.50~2.70m,平均1.65m;层底标高:-5.67~-3.85m,平均-4.80m;层底埋深:2.50~8.60m,平均6.62m。
- 5. (4-1)层粉质黏土:灰色,可塑~软塑,含少量腐植质,局部含白色贝壳,局部夹黏质粉土团块,稍有光泽,略具摇振反应,干强度和韧性中等。厚度:0.80~4.20m,平均1.51m;层底标

- 高:-9.40~-5.22m, 平均-6.29m; 层底埋深:3.60~11.70m, 平均 8.04m。
- 6. (4-2) 层黏质粉土夹粉质黏土: 灰色,中密,湿~很湿,含云母碎屑,局部夹粉质黏土薄层,摇振反应迅速,干强度和韧性低。厚度:0.60~3.60m,平均1.80m;层底标高:-9.70~-7.24m,平均-7.97m;层底埋深:5.50~11.60m,平均9.60m。
- 7. (5-1)层粉质黏土: 灰~青灰色,可塑,局部硬塑,含铁锰质结核及其氧化物,有光泽, 无摇振反应,干强度中等,韧性中等。场区普遍分布,厚度:4.20~6.30m,平均5.55m;层底标 高:-14.07~-12.82m,平均-13.49m;层底埋深:10.80~17.40m,平均14.89m。
- 8. (5-2) 层粉质黏土: 局部为黏土,灰黄色,硬塑,局部可塑,含铁锰质结核及其氧化物,有光泽,无摇振反应,干强度高,韧性高。场区普遍分布,厚度:5.90~7.90m,平均6.89m;层底标高:-21.19~-19.47m,平均-20.35m;层底埋深:17.80~24.00m,平均22.31m。
- 9. (5-3)层粉质黏土夹黏质粉土: 灰黄色,可塑,局部软塑,含铁锰质结核及其氧化物,稍有光泽,无摇振反应,干强度中等,韧性中等,局部夹少量黏质粉土;在 B20#楼处,该层局部位置以黏质粉土为主,夹少量粉质黏土薄层。场区普遍分布,厚度:1.80~3.20m,平均2.47m;层底标高:-23.72~-21.88m,平均-22.80m;层底埋深:19.90~26.50m,平均25.00m。
- 10. (5-4) 层粉质黏土: 灰黄~黄灰色,可~硬塑,含铁锰质结核及其氧化物,有光泽,无摇振反应,干强度高,韧性高。场区普遍分布,厚度:3.70~6.10m,平均 5.08m;层底标高:-29.22~-27.11m,平均-27.89m;层底埋深:26.50~31.50m,平均 30.12m。
- 11. (6-1) 层粉质黏土: 灰色, 软塑, 局部可塑, 含少量腐植质,稍有光泽,无摇振反应,干强度低, 韧性低。场区普遍分布,厚度:1.30~5.10m,平均3.44m;层底标高:-32.48~-29.46m,平均-31.33m;层底埋深:30.00~35.30m,平均33.56m。
- 12. (6-2) 层黏质粉土: 灰色,中~密实,湿~很湿,摇振反应迅速,含云母碎屑,无光泽,摇振反应迅速,干强度和韧性低。场区普遍分布,厚度:1.50~4.10m,平均 2.52m;层底标高:-35.22~-33.01m,平均-33.85m;层底埋深:32.50~37.70m,平均 36.08m。

13. (6-3) 层粉质黏土: 灰色, 软塑, 局部流塑, 含少量腐植质, 稍有光泽, 无摇振反应, 干强度低, 韧性低。场区普遍分布, 厚度:1. 40~2. 90m, 平均 2. 08m; 层底标高: -37. 52~-35. 18m, 平均-35. 93m; 层底埋深: 34. 60~39. 80m, 平均 38. 16m。

14. (7-1) 层粉质黏土: 青灰色,可塑~硬塑,含铁锰质结核及其氧化物,有光泽,无摇振反应,干强度高,韧性高。场区普遍分布,厚度:2.00~4.80m,平均3.46m;层底标高:-40.72~-38.58m,平均-39.46m;层底埋深:38.00~43.50m,平均41.44m。

15. (7-2) 层粉质黏土: 黄灰色,可塑,含铁锰质结核及其氧化物,稍有光泽,无摇振反应,干强度中等,韧性中。场区普遍分布,厚度:1. 30~4. 10m,平均 2. 72m;层底标高:-43. 46~-40. 54m,平均-42. 23m;层底埋深:40. 90~45. 60m,平均 44. 42m。

16. (8) 层粉质黏土: 灰黄色, 硬塑, 含铁锰质结核及其氧化物, 有光泽, 无摇振反应, 干强度高, 韧性高。场区普遍分布, 厚度: 2. 50~5, 90m, 平均 3. 66m; 层底标高: -47. 35~-44. 97m, 平均 -45. 89m; 层底埋深: 45. 00~49. 80m, 平均 48. 08m。

17. (9-1) 层粉质黏土夹黏质粉土: 灰黄色,可塑,含铁锰质结核及其氧化物,稍有光泽,局部略具摇振反应,干强度中等,韧性中,局部夹黏质粉土团块,薄层厚度 0.10~0.25m。场区普遍分布,厚度:3.20~7.70m,平均 5.72m;层底标高:-54.85~-49.56m,平均-51.64m;层底埋深:52.00~57.00m,平均 54.12m。

18. (9-2) 层粉质黏土: 浅灰~青灰色,可塑,含铁锰质结核及其氧化物,稍有光泽,无摇振 反应,干强度中等,韧性中等。场区普遍分布,厚度:1.60~4.80m,平均 2.94m;层底标高:-56.55~-52.81m,平均-54.58m;层底埋深:55.40~58.90m,平均 57.06m。

19. (10) 层粉质黏土: 青灰色,可塑~硬塑,含铁锰质结核及其氧化物,有光泽,无摇振反应, 干强度高,韧性高。该层未穿透。

2.5 地基土的物理力学性质指标

2.5.1室内土工试验主要指标

本次勘察采用《岩土工程勘察规范》(GB50021-2001)(2009年版)第14.2.2条方法对各土层

物理力学性质指标进行分层统计,计算平均值、标准差及变异系数,提供各地基土层主要指标的 样本个数、最小值、最大值、平均值、标准差、变异系数、标准值。各土层的物理力学性质指标 统计结果详见"分层土工试验成果报告表"、"物理力学性质指标统计表"。 各土层物理力学性质 指标值取用原则:物理指标、压缩试验指标取分层统计平均值,主要物理指标见表 5。

各土层抗剪强度取直剪快剪 (q)、直剪固结快剪 (Cq) 及三轴压缩试验 (UU) 指标的标准值, 其标准值按《建筑地基基础设计规范》(GB50007-2011) 附录 E 的方法确定,各土层的主要 C、Φ 标准值见表 6。

各土层主要物理性质指标

表 5

		H-1-/A-1-3	文 7万年11万	CIETAL			-CC :
层号	土 名	含水率 W(%)	比重 Gs	重度Γ kN/m³	孔隙比 e。	塑性 指数 Ip	液性 指数 I
(1-2)	淤泥质粉质黏土	48. 5	2.72	17. 15	1.360	14. 2	1.58
(2)	粉质黏土	25. 0	2.73	19.59	0.707	15. 3	0.27
(3)	粉质黏土	27. 6	2.72	19. 14	0.777	13. 3	0.51
(4-1)	粉质黏土	30, 2	2.72	18. 75	0. 851	12. 9	0.71
(4-2)	黏质粉土夹粉质黏土	29. 4	2.71	18. 84	0. 824	9.3	1.08
(5-1)	粉质黏土	24. 3	2.73	19.72	0.686	15. 1	0.25
(5-2)	粉质黏土	24. 3	2, 73	19.72	0.688	16. 2	0.23
(5-3)	粉质黏土夹黏质粉土	29.7	2.72	18, 91	0.830	13.6	0.63
(5-4)	粉质黏土	24, 5	2. 73	19.61	0.699	15. 6	0.24
(6-1)	粉质黏土	31, 5	2.72	18.64	0. 882	13. 5	0.75
(6-2)	黏质粉土	30. 2	2.71	18.72	0.845	8. 4	1.27
(6-3)	粉质黏土	33. 2	2, 72	18. 47	0. 924	13. 9	0.81
(7-1)	粉质黏土	24. 9	2. 73	19, 62	0.703	15. 4	0.25
(7-2)	粉质黏土	27, 0	2.72	19. 25	0.761	13. 6	0.41
(8)	粉质黏土	23, 9	2. 73	19. 76	0. 679	16. 1	0, 22
(9-1)	粉质黏土夹黏质粉土	28. 6	2. 72	18. 99	0.807	13.0	0.59
(9-2)	粉质黏土	27. 5	2. 72	19.33	0. 759	13. 1	0.53
(10)	粉质黏土	24. 0	2.73	19.79	0.677	15.8	0.24

C、 Φ标准值统计成果表

表 6

层号 土	上尼夕秋	直剪切	· 剪 (q)	直剪固	快(Cq)	三轴剪	ý (UU)	无侧限抗 压强度	灵敏度	
	层号 土层名称	C _k (KPa)	ф к (")	C _k (KPa)	ф "(")	C _k (KPa)	ф	qu(kPa)	St	
(1-2)	淤泥质粉质黏土	11.3	6. 9	11.2	10. 2	20.0	1.0	40, 3	4.59	

层号	土层名称	直剪快	R剪(q)	直剪固	快(Cq)	三轴剪	事(UU)	无侧限抗 压强度	灵敏度
压力	工宏名你	C _k (KPa)	ф к (°)	C _k (KPa)	ф к (°)	C _k (KPa)	ф ф	qu (kPa)	St
(2)	粉质黏土	52. 3	14. 4	47.2	18, 1	79.0	1, 2		
(3)	粉质黏土	29. 2	13. 0	28. 5	16, 4	47.9	1.6		
(4-1)	粉质黏土	20. 9	12, 2	22.6	15. 4	34. 2	1.4		
(4-2)	黏质粉土夹粉质黏土	10.3	21.4	8. 5	15, 5	18.8	4.2		
(5-1)	粉质黏土	55. 9	14. 9	44. 1	18. 0	83. 7	1.4		
(5-2)	粉质黏土	63. 6	15. 1	9		82. 3	1.4		
(5-3)	粉质黏土夹黏质粉土	24. 4	12.8			33. 1	1, 5		
(5-4)	粉质黏土	59. 5	14. 8			78. 9	1.8		
(6-1)	粉质黏土	19.9	12.0			33. 0	1.4		
(6-2)	黏质粉土	8, 5	23. 7			22. 0	7.3		
(6-3)	粉质黏土	18. 9	11.8			32. 1	1, 2		
(7-1)	粉质黏土	55. 6	14.9			73. 0	1.6		
(7-2)	粉质黏土	35. 1	13.4			51.3	1.7		
(8)	粉质黏土	63. 6	15.3			94.6	1.5		
(9-1)	粉质黏土夹黏质粉土	25. 0	13. 2			41.2	1.6		
(9-2)	粉质黏土	23.7	12. 4			34, 1	1.4		
(10)	粉质黏土	37, 1	13. 3			78. 5	1.4		

2.5.2 原位测试指标

标准贯入试验锤击数取分层统计平均值。各孔标准贯入试验锤击数值见"标贯分层统计表"。 单桥静力触探试验比贯入阻力 Ps 值,取各单孔分层 Ps 值的厚度加权平均值;双桥静力触探试验 锥尖阻力 qc 及侧壁摩阻力 fs 取各单孔分层 qc、fs 值的厚度加权平均值。详见"静力触探统计表"。 现将原位测试主要指标列于表 7,颗粒分析统计成果见表 8。

原位测试指标统计表

表

		标准贯	角板 P	s(MPa)	双桥										
层号	号 土层名称	(击)		(击)		4-17[1	+1)[1.5 (m1 a)		200	DF.					
12. 9	工层石柳	ix	. 375.0	Charles Lawre			1-111	77 IE W. 1-30 W.				q. (MPa)		f _* (KPa)	
		平均值	标准值	平均值	平均值 标准值	半均值	标准值	平均值	标准值	平均值	标准值				
(1-2)	淤泥质粉质黏土	2.5	0.8	2.3	1.0	0.772	0.683	0.629	0.548	28	23				
(2)	粉质黏土	11.7	11.1	11.2	10.6	3. 369	3. 295	2. 197	2.149	121	117				
(3)	粉质黏土	10.0	9.4	9.1	8.6	2. 372	2. 326	1.707	1.659	60	58				
(4-1)	粉质黏土	7.3	6.8	6. 5	6.0	1.739	1.695	1. 380	1, 322	44	42				

层号	土层名称	标准贯入(实测) (击)			标准贯入(修正) (击)		单桥 Ps (MPa)		双桥			
12. 7	工/云石柳	717 L/s /4e	1-14-41	277 17- 64-	2-10-66	tw/12.44	1-1-11-11	q. (MPa)	f _s (K	Pa)	
		平均值	标准值	平均值	标准值	平均值	标准值	平均值	标准值	平均值	标准值	
(4-2)	黏质粉土夹粉质黏土	13.3	13.0	11.4	11, 1	4. 996	4.788	4. 274	4. 065	93	90	
(5-1)	粉质黏土	15.4	14.7	12, 9	12.5	2.980	2. 927	1.803	1.765	92	83	
(5-2)	粉质黏土	18.4	17.9	14. 1	13.8	3. 921	3, 792	2, 533	2. 482	121	120	
(5-3)	粉质黏土夹黏质粉土					2, 215	2, 117	1. 535	1.477	57	55	
(5-4)	粉质黏土					3, 765	3, 059	2. 238	2. 329	110	108	
(6-1)	粉质黏土					2. 379	1.853	1.619	1. 55	38	37	
(6-2)	黏质粉土	22.3	21.3	12.9	12, 4	7. 231	6. 794	6. 575	6. 361	129	122	
(6-3)	粉质黏土					1. 445	1. 299	1.672	1.602	32	31	
(7-1)	粉质黏土					2. 681	2. 097	2, 758	2. 651	89	86	
(7-2)	粉质黏土							2.751	2. 362	93	83	
(8)	粉质黏土							3. 329	3. 085	150	139	
(9-1)	粉质黏土夹黏质粉土							4. 452	3. 869	170	147	
(9-2)	粉质黏土							2. 835	2. 515	64	51	
(10)	粉质黏土							4, 008	3. 557	140	106	

颗粒分析统计成果

表 8

层号	+ 4	颗粒组成(%)					
区 与	上 4	0.25~0.075	0.075~0.005	<0.005			
4-2	黏质粉土夹粉质黏土	9.4	77.9	12.7			
6-2	黏质粉土	9. 5	78. 2	12. 3			
9-1	粉质黏土夹黏质粉土	7.3	79. 2	13. 5			

2.5.3 地基承载力特征值的确定

地基承载力特征值依据土工试验物理指标查表、剪切指标 C、Φ标准值公式计算,并结合静力 触探、标准贯入试验的经验公式以及江阴地区工程经验综合考虑确定的,各地基土层承载力见表 9。

各地基土层承载力分析表

单位: kPa

表 9

土层	土层名称	按土试成果、	C、Φ计算	静探	估算	标贯计算	承载力特征值 建议值
编号		值查表	f_{ak}	单桥	双桥	f_{ak}	fak
(1-2)	淤泥质粉质黏土	75	70	72	73		70
(2)	粉质黏土	234	218	221	215	220	210
(3)	粉质黏土	178	154	165	159	165	150
(4-1)	粉质黏土	135	118	124	115	132	110
(4-2)	黏质粉土夹粉质黏土	157	143	155	140	160	140

土层	土层名称	按土试成果、	C、 Φ计算		估算 ·	标贯计算	承载力特征值 建议值
编号	377,177	值查表	f_{ak}	单桥	双桥	f _{ak}	f_{sk}
(5-1)	粉质黏土	226	212	217	206	225	200
(5-2)	粉质黏土	255	238	243	236	246	230
(5-3)	粉质黏土夹黏质粉土	171	155	159	152		150
(5-4)	粉质黏土	245	228	231	226		220
(6-1)	粉质黏土	239	124	128	125		120
(6-2)	黏质粉土	170	173	168	163	165	160
(6-3)	粉质黏土	130	114	125	110		110
(7-1)	粉质黏土	236	212	219	207		200
(7-2)	粉质黏土	206	187		185		180
(8)	粉质黏土	268	248		245		240
(9-1)	粉质黏土夹黏质粉土	179	172		163		160
(9-2)	粉质黏土	162	145		148		140
(10)	粉质黏土	231	209		213		200

注: 1. 表中承载力仅供评价土性之用,设计取值应进行深、宽修正。2. 查表法根据《工程地质手册》(第五版)第四篇第四章第三节。3. 理论计算 C、 Φ 为直剪快剪指标,假设基础宽度 b=3 米,埋深 h=0.5 米,依据"GB50007-2011"规范公式 5.2.5 计算。4. 静力触探(双桥静力触探 q_c 与 Ps 换算公式: Ps=1. $1q_c$),淤泥质土:fak=29+0. 06Ps(kpa),一般黏性土:fak=34+0. 06Ps(kpa);粉土、粉细砂:fak=80+0. 01Ps(kpa)。5. 江阴地区标准贯入试验击数 N 计算 fak 经验公式: fak= -150+22 $2N^{0.1}$ (不作杆长修正),适用于粉土、粉砂。

2.5.4 地基土固结程度 OCR 值的确定

地基土的固结程度是按高压试验,采用 Cassagrande 法对土层进行分析、统计、计算获得,提供了土层的先期固结压力 Pc、固结比 OCR,见表 10。

各地基土层高压固结试验统计表

表10

土样编号	先期固结压力 Pc	固结比 OCR	固结比 OCR 平均值
J21-1	31	1. 25	
J21-2	48	1, 18	
J21-3	59	1.04	
J22-1	30	1.21	
J62-1	42	1.14	1, 16
J62-2	61	1.00	
J117-1	30	1, 21	
J119-1	41	1.11	
J121-1	32	1. 29	

2.5.5 压缩性指标

压缩试验提供分层综合压缩试验结果,统计结果见"综合固结试验曲线图",压缩模量可在压缩曲线上选取土层自重应力至自重应力与附加应力之和段的压缩模量值,请设计选取。

2.6 不良地质作用及特殊性岩土

根据本次勘察取得的地层资料和区域地质资料,拟建场区内未见活动断裂、滑坡与泥石流等 不良地质作用。

拟建场地地貌单一,拟建场地 60.00m 深度范围内地层为第四系全新统、更新统沉积物,主要由黏性土、粉土及等组成。

拟建场地浅部分布(1-2)层淤泥质粉质黏土,层底起伏大,其最大揭露埋深达 8.50m,具高压缩性,流塑,固结比 0CR=1.16,为正常固结土。根据室内无侧抗压强度试验指标,该层为软土,有机质含量 3.5%,灵敏度 St=3.24~4.74,为中灵敏度。为本场地浅部主要不良工程地质软弱层【(1-2)层淤泥质粉质黏土具体分布位置详见"建筑物与勘探点平面位置图"】。

三、水文地质条件

3.1 地表水

拟建场区地表水系发育, 地块西侧、南侧、东侧为湖庄北荡, 水面标高 1.40m (测量日期: 2019.3.15), 水深为 0.20~2.20m, 河底浮淤厚为 0.10~2.10m, 河塘基底标高-1.00~-2.87m。

3.2 地下水

拟建场地在勘察深度范围内地下水主要为赋存于第四系全新统及上更新统中的浅层含水层、 浅层微承压水层共2个含水层。分别为(1-1)层素填土中的潜水,(4-2)层黏质粉土夹粉质黏土、 中的微承压水。现对拟建场地的浅部含水层分别评述如下。

3.2.1 潜水

勘察期间,采用挖坑法测得拟建场地(1-1)层素填土地下水稳定水位统计值见表 11-1。其地下水类型为潜水型,地下水主要靠大气降水及地表径流补给,并随季节与气候变化,水位有升降变化,正常年变幅在 1.0m 左右,本场地 3~5 年内最高潜水水位标高 2.60m 左右,江阴市徐霞客镇历史最高潜水水位为 3.40m。

稳定水位情况

表 11-1

207.413	稳定水位							
数据	稳定水位	埋深(m)	稳定水位标高(m)					
个数	最小值	最大值	最小值	最大值				
91	0.12	1.69	1.48	2.23				

3.2.2 微承压水

主要分布于(4-2)层黏质粉土夹粉质黏土中,其中(4-2)层黏质粉土夹粉质黏土含水层土性以粉性土为主,富水性及透水性中等。勘察期间采用钻孔采用填土套管止水测得((4-1)层黏质粉土夹粉质黏土中微承压水稳定水位(水头)标高统计值见表 11-2。该层地下水主要靠大气降水和地表水体侧向补给,正常年变幅在 0.80m 左右。对基坑开挖有一定影响。

微承压水位情况

表 11-2

NV - LC3	稳定水位							
数据	稳定水位	7.埋深(m)	稳定水位	稳定水位标高(m)				
个数	最小值	最大值	最小值	最大值				
6	5. 50	6.00	-2, 90	-2.50				

3.3 腐蚀性评价

拟建场地地下水清澈、透明、无异味,场地内及附近无污染源。场地土层经充分的淋滤作用,与地下水有相似的可溶化学成分。本次勘察采取本场地 6 件潜水水样(J2、J27、J77、J128、河水 1、2)和 3 件微承压水(J11、J30、J74)进行水质分析,详细指标见提供的"地下水水质分析报告"。主要化学指标见表 12-1。

地下水化学成分(mg/L)

表 12-1

水样 编号	PH	Ca ²⁺	Mg ²⁺	NH ₄ *	S0 ₄ ²⁻	C1	CO ₃ ²⁻	HCO ₃	ОН	游离 CO ₂	侵蚀性 CO ₂	总矿 化度
J2	7. 26	44.6	14.0	1.0	81.9	41, 2	0.00	1, 300	未检出	7.7	1.1	259.7
J27	7. 29	50. 2	21.6	0.7	75. 2	63. 9	0.00	1.788	未检出	9.7	1.1	306. 4
J77	7.08	48.8	22.4	0.9	73.5	52. 5	0.00	1.899	未检出	7.9	2.2	289.8
J128	7.14	47.4	22.0	0.9	70.2	45. 4	0.00	1.949	未检出	8.8	1, 1	276.2
河水1	7.12	50.9	13.5	0.8	93.6	48. 3	0.00	1.250	未检出	6.2	2.2	286.0
河水2	7.07	53.7	10.6	0.9	83.6	44.0	0.00	1.150	未检出	8.8	1.1	260. 2
J11	7.46	41.8	27.9	1.0	83, 6	68. 2	0.00	1.300	未检出	8.8	2.2	294. 2
J30	7.49	53.7	13. 5	0.9	73.5	72.4	0.00	1.050	未检出	7.0	2. 2	284. 7
J74	7, 44	57. 2	13.9	0.9	85.3	58. 2	0.00	1.796	未检出	8, 8	2.2	318.6

注: HCO。单位为 mmo1/L。

按《岩土工程勘察规范》(GB50021-2001)(2009年版)表12.2.1、表12.2.2、表12.2.4规定,根据水质分析报告水质分析资料,综合评定如下:

- (1)、按环境水类型,据水中腐蚀介质SO₄^{2*}、Mg^{2*}、NH₄、OH及总矿化度含量判定,场地地下水对混凝土结构微腐蚀性。
- (2)、按土层渗透性、pH值、腐蚀性CO₂含量及HCO₃含量判定,场地地下水对混凝土结构微腐蚀性。
- (3)、按水中 CI 总含量判定,在长期浸水状态下,地下水对钢筋混凝土结构中的钢筋微腐蚀性,在长期侵水条件下对钢筋混凝土结构中微腐蚀性,干湿交替状态下,地下水对钢筋混凝土结构中的钢筋微腐蚀性,对钢结构具微腐蚀性。

拟建场地地下水位较高,本场地勘察时对地下水位以上地基土取3组土样进行土的易溶盐分析 试验(详细指标见"易溶盐检测报告表"),主要化学指标见表12-2。

地基土易溶盐化学成分(mg/kg)

表 12-2

土样编号	PH	Ca ²⁺	$\mathrm{Mg}^{2^{+}}$	SO ₄ ²⁻	C1-	CO ₃ ²	HC0 ₃
盐 J11	7. 37	28. 59	16. 50	78. 56	34. 08	0.00	76, 25
盐 J27	7.42	31. 38	29. 61	86. 92	46, 86	0.00	118.95
盐 J77	7. 32	27. 90	15. 23	78.56	36, 92	0.00	76. 25

按《岩土工程勘察规范》(GB50021-2001)(2009年版)表12.2.1、表12.2.2、表12.2.4规定,根据水和土的腐蚀性评价资料,综合评定如下:

- (1)、按Ⅱ类环境类型,据土中腐蚀介质SO₄²、Mg²⁺含量判定,场地地基土对混凝土结构微腐蚀性。
 - (2)、按地层渗透性,根据pH值判定,场地地基土对混凝土结构有微腐蚀性。
 - (3)、按土中C1 总含量判定, 地基土对钢筋混凝土结构中的钢筋具微腐蚀性。

综合判定拟建场地地下水位以上地基土对混凝土结构、混凝土结构中的钢筋具微腐蚀。

按《岩土工程勘察规范》 (DGJ32/TJ208-2016) (江苏省) 第 16.4.7~16.4.17 条的有关规定,分析、判定结果见下表 12-3、12-4。

潜水对建筑材料腐蚀性评价

表 12-3

腐蚀介质	测试方法	环境类	型或地层 性	渗透	测试值范围	建筑材料	材料 腐蚀性评价		1
SO ₄ ²⁻	EDTA 容量法		1	Ç	70.2~93.6mg/L		微用	筹蚀	
504	EDIA 谷里亿		$\Pi_{\mathfrak{g}}$		70. 2 ~93. 0mg/L		微腐蚀		
AUL 1	钠氏试剂比色法	环境类型	I c		0.7-1.0/1		微腐蚀		
NH ₄	的人风利比巴杰	类型	II	I ₀	0.7∼1.0mg/L		微腐蚀		
OH B	酸滴定法		I _c		未检出	砼结构	微原	腐蚀	
Off	政确定仏				ント132 UI	7.50-14.1,3	微腐蚀		
PH	电位法	Adr			7.08~7.49		微腐蚀	十字	独身
侵蚀性 CO2	盖耶尔法	层	环境条件	В	1.1∼2.2mg/L		微腐蚀	十字法评	微腐蚀
HCO ₃	酸滴定法	地层渗透性	条件	D	1.050~1.949mmo1/L		微腐蚀	价	VER
Mg ²	EDTA 容量法	1.11.			10.6∼27.9mg/L		微腐蚀		
C1-	麻力社	长期浸水			41.2~72.4mg/L	钢筋砼结	微腐蚀		
Cl	摩尔法	非长期浸水		(41. 2 72. 4mg/L	构中钢筋	微腐蚀		
综合评价	潜水对混凝土结构	均具微腐蚀	性,对	钢筋混	凝土结构中钢筋具微腐蚀	虫性			

十对建筑材料腐蚀性评价

表 12-4

腐蚀 介质	测试方法	1 1 1 2 2	Charles and a second		环境类型或地层 渗透性		测试值范围	建筑材料	腐蚀性评价
SO ₄ 2-	EDTA 容量 法	环境	环境 III _B 78.56~86.92mg/kg			微腐蚀			
ОН	酸滴定法	类型			0.00mg/kg	TA 64-44	微腐蚀		
РН	锥形玻璃 电极法	地层流	地 层 境 条 B		7. 37~7. 52	- 砼结构 -	微腐蚀		
Mg ²⁺	EDTA 容量 法	疹透 性			15. 23~29. 61mg/kg		微腐蚀		
C1-	,	摩尔法			34.08~46.86mg/kg	08~46.86mg/kg 钢筋砼结 构中钢筋			
综合评 价	地下水位以	上地基二	上对混	疑土结	构和钢筋混凝土结构中钢	筋具微腐蚀性	•		

综合判定地下水对混凝土结构具微腐蚀,对钢筋混凝土结构中的钢筋在长期浸水条件下具 微腐蚀、在非长期浸水条件下具微腐蚀;地下水位以上地基土对混凝土结构具微腐蚀,对钢筋混 凝土结构中的钢筋具微腐蚀。

四、场地和地基的地震效应

4.1 评价依据及标准

根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)附录 A, 江阴市抗震设防烈度为 6 度。则根据其 1.0.2 条: "抗震设防烈度为 6 度及以上地区的建筑,必须进行抗震设计"。

4.2区域构造及地震历史资料

江阴市位于扬子准地台下扬子台褶带东端。印支运动(距今约 2.3 亿年) 使该区褶皱上升成陆,燕山运动发生,使地壳进一步褶皱断裂,并伴之强烈的岩浆侵入和火山喷发。白垩纪晚世,渐趋宁静,该区构造格架基本定型。进入新生代,地壳运动总的趋势是山区缓慢上升,平原区缓慢沉降,并时有短暂海侵。据历史记载,据近二千多年的历史记载共发生大于 4 级的地震 49 次,大于 5 级的地震 9 次,其中较大的地震有 1974 年 4 月 22 日溧阳市上沛 5.5 级地震,和 1990 年 2 月 10 日常熟~太仓沙溪 5.1 级地震。

江阴市地区地震水平, 从强度和频度上来看, 地震活动水平属中等偏下, 属基本稳定地区。

4.3 建筑的场地类别

根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)的有关要求,本次勘察对场地28个孔20.0m深度内进行了波速测试。测试分析结果见"波速测试表",各孔的剪切波速见表13。

剪切波速成果表

表 13

			23 23	TO THE PARTY			74.10				
楼号	B1#	B2#	B3#	B4#	B5#	B6#	B7#	B8#	B9#		
孔号	J51	J48	J45	J42	J38	J37	J33	J30	J27		
Vse(m/s)	179	181	152	185	183	151	154	183	186		
楼号	B10#	B11#	B12#	B13#	B14#	B15#	B16#	B17#	B18#		
孔号	J26	J22	J21	J16	J13	J12	J9	Ј8	J6		
Vse(m/s)	154	158	153	178	179 -	183	159	176	182		
楼号	B19#	B20#	A66#	C1#	C1#	A55#	A48#	A39#	A27#		
孔号	Ј3	J1	J53	J124	J127	J59	J70	J80	J92		
Vse(m/s)	180	152	161	173	175	180	178	180	176		
楼号	A23#	A7#	A3#	地库							
孔号	J110	J111	J118	J140							
Vse(m/s)	178	162	164	153							

根据测试成果,剪切波速 Vse=151.0~188m/s,按最不利值为 Vse=151m/s 考虑。根据拟建场地钻孔资料,拟建场地覆盖层厚度约 100.00m,确定本场地建筑的场地类别为III类。

4.4场地地段划分

根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)第4.1.1条,拟建场地内有河道、 软土分布,综合考虑拟建场地为对建筑抗震不利地段。

4.5 地震动参数

根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)附录 A, 江阴市抗震设防烈度为 6 度,设计基本地震加速度为 0.05g,设计地震分组为第二组;根据《建筑抗震设计规范》(GB50011-2010)(2016 年版)5.1.4 条,设计特征周期值为分别如下:

B1#-B20#高层和大地库、大地库上的配电站 P4#~P6#接的最不利考虑,设计特征周期值为 0.64s(内插);别墅区位于河道和暗塘地段的 A1#~A7#、A11#~A14#、A19#、A20#、A23#、A28#、A29#、A32#、A33#、A37#~A39#、A42#~A44#、A47#、A50#、A51#、A54#、A55#、A59#、A61#~A69#、C1#、P7#设计特征周期值为 0.64s(内插);其余建筑设计特征周期值为 0.55s。

4.6 场地饱和砂(粉)土液化判别

江阴市抗震设防烈度为 6 度,依据《建筑抗震设计规范》(GB50011-2010)(2016 年版) 4.3.2 条款,本工程抗震设防类别为标准设防类(简称丙类),拟建场地地基土可不进行液化判别。C1#幼儿园,抗震设防类别为重点设防类(简称乙类),抗震设防烈度提高一级,为 7 度。依据《建筑抗震设计规范》(GB50011-2010)(2016 年版)有关规定,对 C1#幼儿园处 3 个取土、标贯孔(4-2)层中 6 个点进行饱和砂(粉)土液化判别。对(4-2)层黏质粉土夹粉质黏土中 6 个扰动土样进行颗粒分析,颗粒分析结果显示土样黏粒含量均大于 10%,可初步排除其液化的可能性。

五、岩土工程分析与评价

5.1 场地稳定性评价

据本地区地震资料,江阴市及邻近地区地震不强烈,地震活动水平属中等偏下,属基本稳定地区。拟建场地无全新活动断裂及滑坡等场地稳定性的不良地质作用存在。故本场地适宜建筑物的兴建。

5.2 天然地基

5.2.1 地基稳定性、地基均匀性

拟建场地地形较为平坦,拟建 A1#~A7#、A11#~A14#、A19#、A20#、A23#、A28#、A29#、A32#、A33#、A37#~A39#、A42#~A44#、A47#、A50#、A51#、A54#、A55#、A59#、A61#~A69#、C1#、P7#、B2#、B3#、B6#、B7#、B10#、B11#、B12#、B16#、B17#、B20#位于明河或暗塘之上,上述拟建物浅部分布软弱土层,最大层底埋深达 8.50m,故综合判断上述建筑物场地地基稳定性、均匀性较差,其余建筑物场地地基稳定性、均匀性较好。

5.2.2 天然地基评价与分析

5.2.2.1 基础类型

根据拟建物特征、荷载,并结合拟建场地场地工程地质条件,土层分布特征等综合分析,建议拟建别墅、幼儿园和配电室 P1#、P2#、P3#、P7#基础型式采用柱下独立基础,拟建配电室 P4#、P5#、P6#(位于地下车库之上)与地下车库的基础型式采用筏板基础。

5.2.2.2 基础持力层的选择

经本次勘察查明,拟建场地浅部分布(2)层粉质黏土,地基承载力特征值 f_{ak}=210KPa。根据上述土层分布情况,结合建筑物特性及基础埋深,建议好土区别墅、一层商业 S1、S2、S3 及配电室 P1#、P2#、P3#采用(2)层粉质黏土作天然地基持力层。

局部位置(A8#~A10#、A21#、A22#、A24#~A27#、A30#、A31#、A40#、A45#、A46#、A48#、A49#、A58#)紧邻基坑,建议采用天然地基时适当加深基础埋深;或采用桩基础,桩型以500mm 预应力管桩为宜,以(5-1)层粉质黏土做桩基持力层。

局部位置(A1#~A7#、A11#~A14#、A19#、A20#、A23#、A28#、A29#、A33#、A37#、A38#、A39#、A42#~A44#、A47#、A50#、A51#、A54#、A55#、A59#、A62#~A68#、C1#、P7#)有(1-2)淤泥质粉质黏土,厚度、范围较小区可挖除上部淤泥质粉质黏土后采用素混凝土回填至设计标高。厚度较大区建议采用桩基础,桩型以 500mm 预应力管桩为宜,以(5-1)层粉质黏土做桩基持力层。

根据设计提供的资料,B1#~B20#住宅楼(15F~18F)层数高,上部荷载大,考虑到拟建物上述特征、荷载及基础埋深等特点,天然地基已不能满足上部荷载要求,建议B1#~B20#住宅楼采用桩基础。

5.2.2.3 地基处理方案建议

拟建软土区别墅受场地内明塘、暗塘影响,持力层(2)层粉质黏土变薄或缺失,该部位应进

行必要的地基处理,由于场地具备放坡开挖条件,建议拟建明塘、暗塘部位部分别墅在清除塘底淤积物后采用碎石垫层或压缩性相临的土分层夯实回填至基底标高。明塘、暗塘的妥善处理对本工程极为重要,垫层的设计、施工应严格按照有关规范要求进行,并应采取有效措施防止垫层产生侧向位移,同时应适当加强上部结构的整体刚度,垫层施工后应按规范要求进行检测。

由于拟建明塘、暗塘部位部分别墅清除塘底淤积物后底部落于不同持力层上(2)层粉质黏土、碎石垫层},强度差异明显,建议设计时进行强度验算及不均匀变形验算;为防止不均匀沉降,建议适当增强基础刚度和整体性。

由于明塘、暗塘的影响,相邻基础持力层厚度变化较大,建议设计人员进行相邻基础的差异沉降验算。

5.2.3 下卧层强度验算

由于场地内(3)层粉质黏土、(4-1)层粉质黏土为本场地相对软弱下卧层,建议设计时对下卧层强度进行计算。

5.3 桩基础

5.3.1 桩型选择及桩端持力层的选择

5.3.1.1 桩型选择

桩型选择主要受场地周边环境和沉桩可行性两大因素决定。

1. 周边环境

拟建场地位于场地位于江阴市徐霞客镇,锡澄高速西侧、X307路南侧、中国徐霞客旅游博物馆东侧,地下管线较少,同时考虑到施工过程中存在一些不确定因素,故本场地周边环境按中等复杂考虑。

2. 桩型的选择

根据建筑物性质、荷载、场地土层分布规律条件、施工条件、施工周期及施工成本等,并结合江阴地区桩基施工经验综合分析,适宜的桩型有预制方桩、预应力管桩及钻孔灌注桩,根据建筑性质、场地条件、施工条件、经济效益等比较,建议 B1~B20 住宅楼采用预应力管桩或预制方桩,考虑到管桩在穿越较厚软土时桩的稳定性对承载力降低的影响以及基坑开挖时当坑底土层为软土时大型建筑机械对预应力管桩或预制方桩扰动较大等原因,也可考虑采用钻孔灌注桩。抗拔桩型采用混凝土预制方桩(或钻孔灌注桩)。

5.3.1.2 桩端持力层的选择

根据本次勘察成果,拟建场地分布(5-1)层粉质黏土、(5-2)层粉质黏土、(5-4)层粉质黏土等,工程特性均较好,是较为理想的桩端持力层。详细评价见表 14。

桩基持力层评价表

表 14

层号	土层名称	土层特点	桩基持力层评价
5-1	粉质黏土	H-	工程特性中等,可选为别墅 幼儿园(2F)预应力管桩持 力层。
5-2	粉质黏土	灰黄色, 硬塑, 局部可塑, 含铁锰质结核及其氧化物, 有光泽, 干强度高, 韧性高。场区普遍分布, 厚度: 3.40~8.60m, 平均 6.80m; 层底标高: -22.30~-17.20m, 平均-20.35m; 层底埋深: 19.30~24.70m, 平均 22.95m。	工程特性中等偏好,可选为 B1#~B20#住宅楼(18F)预 应力管桩持力层。
5-4	粉质黏土	灰黄~黄灰色,可~硬塑,含铁锰质结核及其氧化物,有光泽,干强度高,韧性高。场区普遍分布,厚度:3.10~6.30m,平均5.01m;层底标高:-32.09~-25.37m,平均-27.82m;层底埋深:28.60~34.60m,平均30.41m。	工程特性中等,可选为 B1#~B20#住宅楼(18F)预 应力管桩或灌注桩持力层。

5.3.2 桩基础设计参数

根据本次勘察土工试验成果依据《建筑桩基技术规范》(JGJ94-2008); 并根据原位测试成果,依据《高层建筑岩土工程勘察标准》(JGJ72-2017),并结合江阴地区经验,综合确定桩基设计参数,详见表 15。

桩基设计参数表

表 15

层号	土层名称	混凝土预制桩		钻孔灌注桩		1-1-11- 75 111-
		极限侧阻力标准值 q _{st} (kPa)	极限制且力标准值 q _k (kPa)	极限侧阻力标准值 q _{sk} (kPa)	极限端阻力标准值 q _k (kPa)	抗拔系数
(1-2)	淤泥质粉质黏土	18		16		0.70
(2)	粉质黏土	72		68	-	0.75
(3)	粉质黏土	48		45		0.72
(4-1)	粉质黏土	30		27		0.72
(4-2)	黏质粉土夹粉质黏土	45		42		0.70
(5-1)	粉质黏土	70	3500	66		0.75
(5-2)	粉质黏土	78	4000	73		0.78
(5-3)	粉质黏土夹黏质粉土	50		47		
(5-4)	粉质黏土	75	4500	70		

注: 抗浮桩的抗拔极限承载力应通过现场抗拔静载荷试验确定。

5.3.3单桩坚向极限承载力估算

根据《建筑桩基技术规范》(JGJ94-2008)混凝土预制桩按第 5. 3. 3 公式 Q_{uk} =u $\Sigma q_{sik} I_i$ + $\alpha P_{sk} A_p$ (单 桥静力触探公式)、第 5. 3. 4 公式 Q_{uk} =u ΣI_i $\beta_i f_{si}$ + $\alpha q_e A_p$ (双桥静力触探公式)及第 5. 3. 5 公式 Q_{uk} =u $\Sigma q_{sik} I_i$ + $q_{ok} A_a$ (土的物理指标公式)估算单桩竖向极限承载力。详见表 16-1、16-2。

预应力管桩单桩竖向极限承载力估算表

表 16-1

房号	孔号	桩型	桩顶标高	桩底	持力层	桩长	桩径(mm)	单桩极限承 (K	
				标高				参数法	静探法
D9	J48	PHC	-1.00	-26.00	(5-4)	25, 00	Ф 500	3471.6	
B2	C83	PHC	-1.00	-26.00	(5-4)	25, 00	Ф 500		3549.8
В3	J67	PHC	-1.00	-26. 00	(5-4)	25.00	Ф500	3305, 1	
DO	C79	PHC	-1.00	-26.00	(5-4)	25. 00	Φ 500		3295.0
В7	J34	PHC	-1.00	-26.00	(5-4)	25, 00	Ф 500	3133.8	
Dr	C59	PHC	-1.00	-26.00	(5-4)	25. 00	Ф 500		3287.1
DIA	J26	PHC	-1.00	-26, 00	(5-4)	25.00	Ф 500	3295.5	
B10	C47	PHC	-1.00	-26.00	(5-4)	25.00	Ф 500		3231.4
B13	J16	PHC	-1.00	-26.00	(5-4)	25.00	Ф 500	3391.8	
D10	C34	PHC	-1,00	-26, 00	(5-4)	25, 00	Ф 500		3262.7
B16	J11	PHC	-1.00	-26.00	(5-4)	25.00	Ф 500	3445.1	
БІО	C19	PHC	-1.00	-26.00	(5-4)	25.00	Ф 500		3235. 7
B18	J5	PHC	-1.00	-26.00	(5-4)	25.00	Φ500	3446.7	
D10	C10	PHC	-1.00	-26.00	(5-4)	25.00	Ф 500		3301.8
B20	J1	PHC	-1,00	-26.00	(5-4)	25. 00	Ф 500	3128.8	
1320	C4	PHC	-1.00	-26.00	(5-4)	25. 00	Ф500		3134.0
口川田文	J57	PHC	2.00	-11.00	(5-1)	13.00	Ф 500	1397.8	
别墅	C103	PHC	2.00	-11.00	(5-1)	13.00	Ф 500		1016.6
411回	J124	PHC	2.00	-11.00	(5-1)	13.00	Ф 500	1667.7	
幼儿园	C251	PHC	2.00	-11.00	(5-1)	13.00	Ф500		1097.3

注: 单桩竖向承载力特征值取极限值标准值的 1/2。

上表仅为估算结果,如设计过程中需改变桩型、桩长等设计参数时,可根据"物理力学性质指标统计表"与"桩基设计参数表"所提供的参数重新估算单桩竖向极限承载力标准值。桩基础施工全面展开之前,应先试桩,做静载荷试验,以取得比较可靠的设计依据。

5.3.4 软土对桩基负摩阻力的可能性分析

由于局部明塘、暗塘位置桩周存在软弱土,厚度较大,建议设计考虑负摩阻力的影响,对单桩竖向极限承载力进行验算。(1-2)层负摩阻力系数 ξ "取值 0.25。建议在桩基施工时进行适当的减少负摩阻力的措施:打桩时可在中性点以上的桩身上涂 1.0mm 的沥青等措施。

5.3.4 桩端下卧层验算

对于桩距不超过 6d 的群桩基础, 桩端持力层下存在承载力低于桩端持力层承载力 1/3 的软弱下卧层时, 请设计按《建筑桩基技术规范》(JGJ94-2008) 5.4.1-1、5.4.1-2 条款进行验算。

5.3.5 地基变形计算参数

根据《建筑地基基础设计规范》(GB50007-2011) 8.5.10 规定: 地基基础设计等级为甲级的建筑桩基; 体型复杂、荷载不均匀或桩端以下存在软弱层设计等级为乙级的建筑桩基; 摩擦型桩基; 需进行沉降验算。拟建高层建筑设计等级为甲级端承摩擦桩基, 故建议设计需对拟建高层进行沉降计算。

压缩模量可在压缩曲线上选取土层自重应力至自重应力与附加应力之和段的压缩模量值,另 土层若为粉土、粉砂,由于取样及土工试验或土的应力条件的改变引起的扰动是不可避免,使土 试获得压缩模量偏小,因而拟建场地土层的压缩模量综合了经原位测试换算的压缩模量,桩基计 算用的沉降压缩模量列于表 17。

建筑桩基沉降计算 E。值建议值 单位: MPa

表 17

层号	岩土名称	由 e~p 曲线 确定的 Es	E _s 建议值
5-4	粉质黏土	10.6	11.0
6-1	粉质黏土	7.2	7, 5
6-2	黏质粉土	14.0	16.0
6-3	粉质黏土	8. 5	9. 0
7-1	粉质黏土	14.0	16.0
7-2	粉质黏土	14, 6	16, 5
8	粉质黏土	18.7	20.0

5.3.6 桩身压曲验算

由于拟建场地软弱土层的直剪快剪(q)的抗剪强度均大于10Kpa,一般可不进行桩身压曲验算。

5.3.7 沉(成)桩可能性及施工中应注意的问题

5.3.7.1 预制桩

桩基工程应选择技术力量相对较好的施工单位,严格按照《建筑桩基技术规范》(JGJ94-2008) 第7章进行施工,必须对施工过程进行控制,桩基施工时应注意以下几个方面。

①用静压工艺为宜,选用与单桩承载力相匹配的压桩设备;

- ②本场地存在(4-2)层黏质粉土夹粉质黏土,沉桩有一定的困难,请用大功率的压桩设备;
- ③在 20#住宅楼处,(5-3) 粉质黏土夹黏质粉土局部位置以中密~密实的黏质粉土为主,此处桩头进入该层时可能会出现压桩力突然增大,沉桩难度稍有加大,因此为保证桩端沉至设计深度,建议采用引孔、大吨位压桩机等施工工艺方法,同时施工时应注意桩顶位移或上升涌起、桩身倾斜等混凝土预制桩打(沉)桩质量通病。为避免挤土效应的影响,应采取合理安排沉桩顺序、控制沉桩速率。

④沉桩时挤土效应明显,由于挤土效应会引起较高的孔隙水压力,导致土体隆起和土体水平位移,可以通过以下方法减轻或消除其影响: (a)设置排水通道,以降低孔隙水压力; (b)严格限制沉桩速度,合理按排打桩顺序; (c)在桩位或桩区外预钻孔取土; (d)设置防挤沟等。

- ⑤接桩宜采用焊接和法兰接;
- ⑥压桩过程中应以设计持力层标高为主, 贯入度控制为辅, 对桩长进行"双控";
- ⑦必须做好施工记录,每根桩施工完成后立即测量桩顶标高。
- ⑧本场地由于存在大面积的软弱土层,对桩周的约束力较差,由于降水及回填土的堆积可能 产生的下拉荷载从而降低单桩承载力。

5.3.8 桩基施工对周边环境的影响

拟建住宅楼距离周边道路较远。本工程住宅楼采用预制桩时,锤击引起的反复振动及沉桩引起的挤土效应对周边道路一般无影响,但建议在沉桩过程中加强监测工作,并对于突发事件,施工时必须有充分的估计,以便采取必要的预防措施(如减震、泄压等措施)。建议预制桩在施工过程中对桩顶和地面土体水平、竖向位移进行系统观测,若发现异常,应及时采取复打、复压、引孔和设置排水等措施。

5.4 基坑工程

本工程基坑主要位于 B1#~B20#住宅楼下部及别墅之间绿地中的地下车库,详细资料见 G2019016-1 的基坑专项报告。

5.5设计参数检测、现场检验和检测

5.5.1 设计参数检验

1. 为设计提供单桩竖向抗压极限承载力依据时,应分桩型、分楼号打试验桩。设计等级为甲级、 乙级的桩基,其单桩极限承载力应采用现场单桩竖向抗压静载荷试验确定,宣加载至破坏,试验 应按现行行业标准《建筑基桩检测技术规范》(JGJ106-2014) 执行。同一条件下的试桩数量不宜小于总桩数的 1%,且不应小于 3 根。

- 2. 抗浮桩,为确定其极限抗拔承载力,应进行现场抗拔静载荷试验确定,试验应按行业标准《建筑基桩检测技术规范》(JGJ106-2014)执行。
- 3. 为检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置,可用低应变法对混凝土桩进行检测。具体检测方法按《建筑基桩检测技术规范》(JGJ106-2014)的要求进行。

5.5.2 现场检验

- 1. 基槽检验应在天然地基开挖或基坑开挖时进行,应检查其揭露的地基条件与勘察成果的相符性。
- 2. 桩基工程应通过试钻或试打检验岩土条件与勘察成果相符性; 桩身质量可采用高、低应变动测法或其它有效方法, 具体检测方法按《建筑基桩检测技术规范》(JGJ106-2014)的要求进行。

5.5.3 现场监测

- 1基坑工程监测应根据工程情况、有关规范和设计要求进行选择,详见《高层建筑岩土工程勘察标准》(JGJ72-2017) 9.3.7条款。
- 2. 沉桩施工监测应根据工程情况、有关规范和设计要求进行选择,详见《高层建筑岩土工程勘察标准》(JGJ72-2017) 9. 3. 8 条款。
- 3. 为满足规范要求及工程竣工验收的要求,在施工开始,整个施工期间和竣工后使用的一定期间内应对建筑物进行沉降观测。具体的沉降观测的方法应按《建筑物变形测量规范》(JGJ8-2016)规范执行。

六、结论及建议

6.1 结论

- 1. 经本次勘察查明了拟建场地内的地层结构和各地基土层的物理力学性质指标,拟建场地区域背景稳定,无活动断裂、滑坡等不良地质作用和洪涝等地质灾害存在,适宜建筑物的建造。
 - 2. 拟建建筑场地类别为Ⅲ类, 拟建场地为对建筑抗震不利地段。
 - 3. 江阴市抗震设防烈度为 6 度,设计基本地震加速度为 0.05g,设计地震分组为第二组。

B1#-B20#高层、大地库及上部 P4、P5、P6 配电站按的最不利考虑,设计特征周期值为 0.64s(内插);别墅区位于河道和暗塘地段的 A1#~A7#、A11#~A14#、A19#、A20#、A23#、A28#、A29#、A32#、A33#、A37#~A39#、A42#~A44#、A47#、A50#、A51#、A54#、A55#、A59#、A61#~A69#、C1#、P7#设计特征周期值为 0.64s(内插);其余别墅设计特征周期值为 0.55s。幼儿园抗震设防类别为重点设防类(简称乙类),抗震设防烈度提高一级,为 7 度,拟建场地地基土(4-2)层土为不液化土层。

4. 拟建场地浅部地下水类型为潜水型。拟建场地地下水稳定水位标高 1. 48~2. 23m, 本场地 3~5 年内最高潜水水位标高 2. 60m 左右; 浅部微承压水水位标高-2. 90~-2. 50m。场地地下水及地基土对混凝土结构、钢筋混凝土结构中的钢筋具微腐蚀。

6.2 建议

1. 拟建好土区别墅、商业 S1~S3 及配电室 P1#、P2#、P3#采用(2) 层粉质黏土作天然地基 持力层,配电室 P4#、P5#、P6#位于大地库上,建议采用筏板基础。

局部受基坑开挖影响的别墅(A8#~A10#、A21#、A22#、A24#~A27#、A30#、A31#、A40#、A45#、A46#、A48#、A49#、A58#),建议采用天然地基时适当加深基础埋深;或采用桩基础,以(5-1)层粉质黏土为桩基持力层,桩型可采用φ500mm预应力管桩。

2. 拟建 A1#~A7#、A11#~A14#、A19#、A20#、A23#、A28#、A29#、A33#、A37#、A38#、A39#、A42#~A44#、A47#、A50#、A51#、A54#、A55#、A59#、A62#~A68#、C1#、P7#受场地内明塘、暗塘影响,持力层(2)层粉质黏土变薄、缺失,该部位应进行必要的地基处理,由于场地具备放坡开挖条件,建议拟建幼儿园及位于暗塘和河道部分别墅明塘部位在清除塘底淤积物后采用碎石垫层或压缩性相临的土分层夯实回填至基底标高。明塘、暗塘部位的妥善处理对本工程极为重要,垫层的设计、施工应严格按照有关规范要求进行,并应采取有效措施防止垫层产生侧向位移,同时应适当加强上部结构的整体刚度,垫层施工后应按规范要求进行检测。

由于拟建建筑清除塘底淤积物后底部落于不同持力层上 {(2) 层粉质黏土、碎石垫层},强度差异明显,建议设计时进行强度验算及不均匀变形验算;为防止不均匀沉降,建议适当增强基础刚度和整体性。

由于明塘、暗塘的影响,相邻基础持力层厚度变化较大,建议设计人员进行相邻基础的差异 沉降验算。 部分位置由于暗塘深度较大, 地基处理不经济时, 建议采用桩基础, 以(5-1) 层粉质黏土为桩基持力层, 桩型可采用 φ 500mm 预应力管桩。

3. 拟建 B1#-B20#住宅楼建议采用桩基础,桩型可采用Φ500mm 预应力管桩,以(5-4)层粉质 黏土为桩端持力层。

根据本次勘探取得的资料,本场地存在大面积的软弱土层,对桩周的约束力较差,由于降水 及回填土的堆积可能产生的下拉荷载从而降低单桩承载力。

- 4. 桩基单桩极限承载力应采用现场单桩竖向抗压(抗拔)静载荷试验确定,试验应按现行行业标准试验《建筑基桩检测技术规范》(JGJ106-2014)规定执行;桩身质量可采用高、低应变动测法或其它有效方法,具体检测方法按《建筑基桩检测技术规范》(JGJ106-2014)的要求进行。
- 5. 注意施工顺序:对于基础埋深不同的建筑,则应遵循先施工基础埋深深、荷载大的建筑, 后施工基础埋深浅、荷载小的建筑。
- 6. 拟建建筑在施工期间及使用过程中,应进行必要的沉降观测,沉降观测应按现行标准《建筑物变形测量规范》(JGJ8-2016)规范执行。
 - 7. 基槽(坑)开挖时,应进行基槽检验。

見			层底	层底	层	含水	比	重	于重	孔隙	饱和	液	塑	塑性	液性	剪切]试验	剪切Cq		剪切]试验	压缩计			标贯 修正	单桥	锥尖	侧壁	颗:	粒组成 0.075	(%)	无侧限 抗压	重塑土抗压	灵	有机	垂直	水平	承
-	岩土名称		深度	标高	厚	率	重	度	度	比	度	限	限	指数	指数	7		- Cong		90		人名	n n			100 100	ma -b.	nës mer alla	0. 24	0.015	20 202			ette:	DA MA	渗透	渗透	特征
2	AL 11 /10		IN LX	Adviet	FF	w	Gs	Y Y	132	0.0	S.	W.	W .	T	10.80	c	Ф	c .	Ф	c	Ф	al-2	Es1-2	山坂	击数	静探	阻力	摩阻力 fs	0.075	0.005	<0.00	5年/支	强度	度	含量	系数	系数	建
			(m)	(m)	(m).	8	6	kN/m 2	kN/m 3	- e	%	%	% P	ть	- T	kPa	度			kPa		MPa -1	MPa	击	击	MPa	MPa	kPa	mm.	nut	'nn	kPa	qu' kPa	St.	%	Kv cm/s	Kh cm/s	
		最小值	0.50	-3.36 ~	0.50	24, 8	2.72	18.70	14, 08	0. 696	94	33.0	20.0	13.0	0,37	18. 3	10.9					0. 27	4. 18			0, 181	0.042	7								1 1 1 1		+
		最大值	6.00	2. 46	6.00	32, 8	2.73	19.70	15, 72	0.891	100	37.0	22.2	15. 6	0.76	37. 4	13.6					0.44	6, 35			2. 103	1.746	74										
		数据个数		318	318	8	8	8	8	8	8	8	8	8	8	6	6	1 1	1			8	8			134	128	129								t	1	
ı	素填土	1	1, 55	0. 78	1, 55		-	19. 11	14, 87	0.796	98	-	20. 8	14. 2		27.4	12.3	34.5 1	16.8			0.35	5. 17			1, 155	0.892	36								4, 89E-06	6. 12E-06	٦
	AL NO.	均方差			_			0.3	0.5	0.060	2		0.8	0.9	127 11 12	-	1, 0					0, 05	0.66			0.368	0.293	12.										
		变异系数	4			1000	0.00	0. 02	0.03	0, 08	0.02	0, 04	0.04	0.06	0. 22	0.21	0.08					0, 15	0.13			0.32	0.33	0.33										
		标准值				29.8		18, 93	14, 59	0.830					-	23.8	11.7					0.38	4.8			1.100	0.839	34										
		~	0.50	-7.96	0.50	~	~	13.70	6.58	0.815	94	~	20.6	11, 6	~	e	Prox.	10.4	10.0	19.4	0.9	0.35	1.48	2.0	1.9	0.330	0.319	12				22. 1	6.7	3.02	2.9	1.23E-06	2. 35E-06	
		最大值	9.60	-0. 91		-	-	18. 90	14, 67	3. 058	-					25. 7	13. 2	13.1	10.6	24.0	1.2	2, 69	5, 19	3. 0	2.6	1.554	1. 111	61				31.0	9. 6	4.00	4. 6	6. 77E-06	8. 23E-06	
		数据个数	122	122	122	37	39	39	39	39	39	39	39	39	38	6	-	9 9	9	6	6	39	39	2		46	31	31				9	9	9	9	11	11	
2	淤泥质粉质黏土	平均值	3.42	-3. 24	2. 56	-		17. 15	11. 82	1. 360		39.5	25. 3	14. 2	21.00			-		21.5		0.88	3. 11	2.5	2. 3	0.772	0.629	28				27. 7	8. 1	3.46	3, 5	3, 27E-06	4, 55E-06	
		均力左					-	1.4	2. 1	0. 577		8. 5	7						-		7 17 2	0.52	0, 91	0.7	0, 5	0, 348	0. 201	14								1,92E-06	1. 99E-06	
		变异系数 标 准 值				54. 1	0.00	0.08	0.18	0, 42	0.02	0. 22	0.32	0.09				-			21100	0. 59	0. 29	0. 28	0. 23	0, 45	0.32	0.49								0.59	0.44	
\dashv		最小值	2.40	-3. 83	0.50	. 5.5.5	9.79	16. 78	11, 25	1.519	0.4	an c	10.0	10.0	111111		2.7	-			1.0	1.03	2.9	0.8	1.0	0. 683	0.548	23								4.34E-06	5. 64E-06	
		最大值	6. 60	-2. 27	~	28. 9	~	20. 30	14.82	0, 610	100	~	18.9	~	~	1940	~	~	~	~	1.1	0.18	5, 48	9, 0	8.7	2. 102	1.618	65								5.78E-08	6. 35E-08	
			291	291	291	190	190	189	190	190	190	189	23.5	17. 0			18.6	-	-	-		0. 32	9. 29	17. 0	16. 0	4, 401	2. 695	151	_					_		1. 25E-06	1. 75E-06	
		平均值		-3. 10		-	-	19, 59	15, 67	0. 707	97		20, 9		110			50.8				190 0. 23	7, 46	21	11.0	122	115	115								8	8	
	粉质黏土	均方差	1	8.19		1. 2	-	0, 2	0.3	0. 032	1	-	0.8				0.8		0.8		0.3	0. 03	0.78	11.7	11.2	3, 369	2. 197	121			-		-	-	-	2.84E-07	3. 78E-07	_
		变异系数				-		0.01	0.02	0.04	0.02		0.04	-		0. 12		0. 12 (-		0. 12	0. 10	-	0, 15	0. 477	0. 246	0, 16	-			-			-	4. 03E-07	5. 69E-07	_
		标准值				25. 2	-	19. 57	15. 64	0.711	-		31.65	51.01	77 200	1100	11.57	47. 2		79.0	-	0. 24	7.4	11.1	10.6	3. 295	2. 149	117	_				-	-	-	1,42	1, 51	_
		最小值	2.50	-5, 67	0.50	23.4	2.72	18.50	13, 90	0.670	94	31.5	18. 0	11.6			-	-		36. 9	1.3	0. 25	3. 99	8.0	7.0	1, 615	1. 128	25	-			-	-		-	5. 56E-07	7. 62E-07	_
		最大值	8, 60	-3.85	2.70	33.1	2.73	19.80	15. 96	0.916	100	37.3	23. 4	15. 2	0.79	42.6	17.6	No.	17.2	58.7	2.5	0. 46	7. 04	~	13.5	3. 236	2, 240	89								2. 17E-06 5. 98E-06	2. 84E-06 6. 38E-06	
		数据个数	366	366	366	152	152	152	152	152	152	152	152	152	152	126	126	9 9	9 !	9	9	152	152	28	-	144	132	132					-	-	-	7	7	-
	纵压纸上	平均值	6. 62	-4, 80	1.65	27.6	2.72	19.14	15. 01	0.777	97	34.0	20. B	13. 3	0.51	30, 1	13. 1	30.7	16.6	52.1	1.8	0. 32	5, 55	-	9.1	2, 372	1. 707	60							-	4. 43E-06	5. 12E-06	_
	粉质黏土	均方差				1.8	0.00	0.3	0.4	0.051	2	1.1	0.8	0.7	0.11	5.7	0.9	3, 6	0.4	6.7	0.4	0, 04	0.55	1.7	1.6	0. 322	0.264	11					-			1. 37E-06	1, 41E-06	_
		变异系数				0.06	0.00	0.02	0.03	0.07	0.02	0, 03	0.04	0.05	0.21	0.19	0.07	0.12	0.02	0.13	0. 22	0. 13	0, 10	0, 17	0, 18	0.14	0. 15	0. 19								0.31	0. 28	-
		标准值				27.8		19.10	14, 95	0.784					0.53	29, 2	13, 0	28.5	16.4	47.9	1.6	0, 33	5.5	9.4	8.6	2. 326	1. 659	58					_			5. 45E-06	6. 17E-06	-
		最小值	3. 60	−9. 40 ~	0.80	25.6	2.72	18.10	13, 48	0.725	93	32. 2	18, 9	11.5	0.50	15.7	10.8	21, 4	15.3	28.1	1.1	0, 28	4.02	6.0	5.0	1,117	0.734	22			-					3. 34E-06	4, 12E-06	_
		最大值	11.70	-5. 22	4. 20	34. 3	2.73	19.40	15. 45	0.975	100	37.9	23.9	15, 3	0.89	29.8	13.4	29.8	16.2	48.9	2.8	0.47	6, 16	13.0	11.3	2. 734	2. 148	77								8. 15E-06	9. 34E-06	
		数据个数	367	367	367	119	119	119	119	119	119	118	118	119	119	96	96	7 3	7 9	9	9	119	119	23		145	132	132					\vdash			7	7	-
	松振新山	平均值	8. 04	-6. 29	1.51				14, 40	0.851	97	34.0	21.0	12.9	0.71	21.5	12.3	24.9	15.6	39.4	1.8	0. 38	4.91	7.3	6. 5	1,739	1.380	44			-		1			5. 32E-06	6. 31E-06	-
	粉质黏土	均方差				1.7	0.00	0.2	0.4	0.046	2	1, 0	0.8	0.8	0.10	3.6	0.6	3.2	0.3	7. 8	0.6	0.04	0, 47	1.5	1, 3	0.309	0. 323	11								1. 97E-06	2. 01E-06	
		变异系数				0,06	0,00	0, 01	0.02	0.05	0.02	0.03	0.04	0.06	0.14	0.17	0, 05	0, 13	0, 02	0.20	0.32	0.11	0. 10	0.20	0, 20	0.18	0.23	0. 26								0.37	0. 32	_
		标准值				30. 5		18.71	14. 34	0.858					0.73	20.9.	12.2	22.6	15.4	34.2	1.4	0, 39	4.8	6.8	6.0	1.695	1.322	42								6. 78E-06	7. 79E-06	

无锡水文工程地质勘察院有限责任公司 徐霞客梦东方文化创意产业园住宅项目

物理力学性质指标统计表

勘察编号制图校核项目负责审核图号 G2019016-1 陆路 圣勇 土田 将品勤 2-1

昙	岩土名称		层底深度	层底标高	层厚	含水率	比重	重度	干重度	孔隙比	饱和度	液限		塑性 指数	液性	剪切	试验	剪切 Cq	试验	剪切	J试验 I	压缩i		实测	修正	单桥静探	锥尖 阻力	侧 壁 摩阻力	颗 0, 25 ~	粒组成 0.075	(%) <0.008	无侧限 抗压 强度	重製土 5 抗压 每 强度 形	()质	渗透	水平 渗透 系数	承報 特征 建设
号	4 1 4 40		(n)	(m)	(m)	W %	Gs -	Y kN/m 3	V _d kN/m ³	e o	Sr %	W L	W ,	I _p	I,	C kPa	度	C kPa	100	C kPa		a1-2 MPa ⁻¹	Es1-2 MPa	N 击	N' 击	Ps MPa	q _e MPa	fs kPa	0.075	0.005	mm	qu kPa		t Wil.	Kv cm/s	Kh cm/s	f a
		最小值	5. 50	-9.70	0, 60	25.0	2, 70	18. 30	13.68	0.707	94	25. 1	18.0	5.8	0.42	6.6		7.3	-	17.8		0. 18	4.01	10.0	8.3	1.910	2. 286	36	3.4	53. 2	7.8				3. 78E-06	4, 28E-06	+
		最大值	11.60	-7.24	3.60	34.0	2, 73	19. 40	15. 52	0. 946	100	37.7	23.8	14.6	1.56	33. 5	26.5	20.0	28. 0	32.2	8.3	0. 47	9.66	16.0	13. 4	8. 009	6. 699	143	39, 0	87. 3	17.6				7, 39E-05	8. 11E-05	
		数据个数	359	359	359	149	149	149	149	149	149	149	149	149	149	130	130	6	6	6.	6	149	149	43	43	150	82	82	113	113	113				7	7	
-2	When do 1	平均值	9, 60	-7.97	1.80	29, 4	2, 71	18. 84	14.57	0.824	97	29, 0	19.7	9.3	1.08	11.1	22. 1	13.7	21.3	24. 0	6.4	0.26	7, 23	13, 3	11.4	4. 996	4. 274	93	9.4	77.9	12.7				3. 96E-05	4. 47E-05	7
	黏质粉土 夹粉质黏土	均方差			-	1.7	0.01	0. 2	0.4	0.045	2	2. 7	0.8	2.1	0. 23	5.2	5.1	6.4	7.1	5, 5	2.3	0.07	1.38	1.3	1.0	1. 490	1. 103	19	8. 4	7.4	1.4				3, 11E-05	3, 48E-05	
	关彻贝纳工	变异系数				0.06	0.00	0. 01	0, 02	0.05	0.02	0, 09	0.04	0.22	0.21	0.47	0.23	0.46	0.33	0.23	0.35	0. 25	0.19	0, 10	0, 09	0.30	0. 26	0.20	0,90	0, 10	0.11				0.79	0. 78	
		标准值				29.6		18.81	14. 52	0.831					1.11	10.3	21.4	8.5	15. 5	18.8	4.2	0, 27	7.0	13.0	11.1	4. 788	4. 065	90							6. 26E-05	7. 05E-05	
		最小值	10.80	-14. 07	4.20	21.9	2.72	19.00	14.85	0.612	94	31.8	18.7	12.0	0.15	3.8	13.3	38.9	17.4	69.5	1.1	0.15	4.31	11.0	9.7	2.060	1. 434	62							2, 29E-08	3. 00E-08	
		最大值	17, 40	-12, 82	6.30	28. 6	2.74	20.30	16.61	0, 807	100	42.5	22.9	19.6	0.38	85.8	17.2	70.2	19.4	111.1	2.4	0.39	11.06	20.0		4, 013	2, 449	106							9. 12E-07	6.35E-07	
		数据个数	238	238	238	312	298	312	311	310	314	309	312	308	313	285	286	6	6	14	14	312	314	21	21	152	92	92							8.	7	
-1	松阳等	平均值	14.89	-13.49	5. 55	24.3	2, 73	19.72	15.87	0, 686	96	35. 6	20.4	15.1	0. 25	56.8	15.0	54. 7	18, 8	90.5	1.6	0. 22	7.81	15. 4	12.9	2. 980	1.803	84							2, 74E-07	2. 12E-07	
	粉质黏土	均方差			1	1.1	0,00	0.2	0.3	0.030	2	1.3	0.7	1.0	0.04	9.0	0.8	11.2	0.8	14. 2	0.4	0. 03	0.91	1.7	1.1	0.382	0, 211	8							3. 19E-07	2, 34E-07	
		变异系数				0, 04	0.00	0. 01	0.02	0.04	0.02	0, 04	0.04	0, 06	0, 15	0, 16	0. 05	0. 21	0.04	0.16	0, 26	0, 13	0, 12	0.11	0.09	0.13	0. 12	0. 10							1.16	1. 10	
		标准值				24. 4		19.70	15.84	0.689					0.26	55. 9	14.9	44.1	18.0	83. 7	1.4	0. 22	7.7	14.7	12.5	2. 927	1.765	83							4, 89E-07	3.86E-07	Π
		最小值	17,80	-21. 19 ~	5.90	20.9	2.72	18.70	14. 42	0.588	94	30.9	18.5	11.5	0.10	34.1	13.3			69.9	1.1	0.13	5, 31	17, 0	13, 1	3, 058	1. 787	93									
		最大值	24.00	-19.47	7. 90	29.7	2, 74	20.50	16.86	0, 861	100	43.6	23, 7	19.9	0, 38	95.0	17.8			123.5	2.5	0.33	12, 23	20.0	15.2	4. 797	3. 264	146									
		数据个数	155	155	155	315	317	314	315	315	317	315	316	316	317	298	298			18	18	316	316	14.	14	33	92	92									
-2	粉质黏土	平均值	22.31	-20.35	6.89	24, 3	2.73	19.72	15, 87	0.688	96	36, 8	20.6	16. 2	0. 23	65.0	15. 2			88. 9	1,6	0, 21	8, 39	18. 4	14.1	3, 921	2, 533	121									П
	初灰 和工.	均方差				1.4	0.00	0. 2	0.4	0. 039	2	1.6	0.8	1.4	0.06	13.5	1.1			15. 9	0.4	0.03	1. 20	1.0	0.7	0. 432	0. 287	10				-					
		变异系数				0.06	0.00	0.01	0. 02	0, 06	0.02	0.04	0.04	0.08	0. 24	0. 21	0.07			0.18	0.26	0.17	0.14	0.05	0, 05	0.11	0.11	0.08									
		标准值				24. 4		19, 69	15, 83	0.692					0.23	63. 6	15.1			82. 3	1.4	0.21	8.3	17, 9	13.8	3, 792	2. 482	120									
		最小值	19.90	-23. 72 ~	1.80	25.4	2.71	18. 10	13. 52	0.705	94	26.6	19, 3	7.2	0, 35	6.8	11.2			28.5	1.2	0.19	3.99			2.092	0.803	42	17. 7	69.2	11.5						
		最大值	26.50	-21.88	3, 20	34, 6	2.73	19.60	15. 63	0, 976	100	39. 4	23. 8	16.8	1.23	40.0	26.7			55. 2	2.4	0.49	9. 33			2, 278	2.658	115	19. 3	69.3	13.0						
		数据个数	143	143	143	127	127	127	127	127	127	125	127	125	125	119	117			8	8	127	125			4	85	85	2	2	2						
-3	粉质黏土夹粉土	平均值	25.00	-22. 80	2.47	-	2.72	18. 91	14. 59	0. 830	97	34.8	21.2	13.6	0.63	25, 5	13, 2			39. 6		0.35	5. 29			2. 215	1.535	57	18. 5	69.3	12, 3						
	初州和二人初二	均方差				2.4	0.01		0, 5	0, 064	2	1.8	0.9	1.3	0.15		2.0			9.7	0.4	0, 06	0.83			0, 086	0.309	9	1, 1	0.1	1. I						
- 1		变异系数			_	-	0.00	-	0. 03	0.08	0.02	0.05	0.04	0.09		0. 25				0. 24	0. 23	0.16	0.16			0, 04	0, 20	0. 16	0.06	0.00	0.09						
		标准值				30.1		18. 85		0.841						24, 4					1.5		5. 2			2, 117	1.477	55									
		最小鱼	~	-29. 22 ~	~	21.6	~	~	~	0, 619	93	~	~	~	~	38. 4	~			52.7	1.1	0, 15	5.85			3.597	1.673	80									
		最大值	-		-	-	-		-	0, 816	100	-	-	-		89.8					2.8	-	10. 80			4,011	3. 173	129									
		数据个数	-	142	142	-	87	88	89	89	89	90	90	89	89	2.00	77				13	90	90			2	87	87									
-4.	粉质黏土	平均值	30. 12	-27.89	5. 08	-	-		15.75	0, 699	96	-	-	-	-	61.7					2.1		8. 01			3. 765	2. 385	110									
	W/W WILLS	均方差				1, 3	0.00		0. 3	0.036	1	-	-	-	-	11. 2					0.5		0.93			0, 298	0, 308	10									
		变异系数					-	0.01	0. 02	0.05	0. 01	0. 03	0.04	0.06		0.18	11 2			200	0. 25	1111111	0.12			0.08	0. 13	0.09									
		标准值				24.8		19.57	15. 69	0.706					0.25	59. 5	14.8			78.9	1.8	0.22	7.8			3.059	2, 329	108									

无锡水文工程地质勘察院有限责任公司徐霞客梦东方文化创意产业园住宅项目

物理力学性质指标统计表

勘察编号制图校核项目负责审核图号 G2019016-1 产生工作 李男 土田 书记勤 2-2

芸			层底		层	含水			重	隙	1 1	和	液		塑性		剪	切试验		刀试验 q	剪切	刀试验 U	压缩		实测	修正	单桥			颗 0,25	粒组成	(%)	无侧限 抗压	重塑上 抗压	灵敏	有机 质	垂直渗透	水平渗透	承勤特征
寻	岩土名称		深度	标高	厚	率 w	Gs	V	度 Y _a	tk e	S	Sr V	w L	W	指数 I,	指数 I _L	С	Ф	С	Ф	С	Φ	al-2	Es1-2	N	N,	静探 Ps	阻力 9.	摩阻力 fs	0.075	0.005	<0.00	强度 qu		度 St	含量 Wu	系数 Kv	系数 Kh	建设 fai
+		11 1 40	(m)	(m)	(m)	%	-	7.17.4	-	-	3	-	-	%		-	kPa	度	kPa	度	kPa	度	МРа "	MPa	击	击	MPa	MPa	kPa	inm	mm	itut	kPa	kPa		%	cm/s	cm/s	. kPa
		最小值最大值	45.00	~	2.50	~	~	20. 30	~	~	~	1.7	~	~	~	0, 12	35. 5	~			2000	1.1	0. 15	5, 63				2, 392	121										
				63	63	62	62	62	62	0.80	62	-	-	23. 2 62	62	0. 39 62	88. 2 50	18.6			122. 4	10	0. 32 62	10, 96 62	-	-	-	3. 880	182		-		-					-	-
1		平均值	-	T		23. 9	-	19.76	_	-			-		16, 1	-	66. 7	-	-		102.0		0. 20	8, 43	+	-		3, 329	150	-					_			-	-
	粉质黏土	均方差	230.00	191.95		1.4	-	0.3	0, 4	0.04	-	1.			0.9		12. 8	1 2 2 1 2			12.6		0. 03	1. 07	+	-		0. 465	22	-			-			_			24
		变异系数				0.06	-	0.01	0.02	-	-	02 0.	_					0. 07	-		-	0. 26		0. 13	-			0. 14	0. 14	-			-		_				-
		标准值				24. 2	+-	19. 70	-	-	-						63. 6	1			94.6		0. 21	8. 2	+	-	-	3. 085	139	+-	-		-		_				-
\dagger		最小值	52.00	-54, 85	3, 20	23. 3	2.71	18. 40	13. 8		9 94	27	7.5	18. 5	8.0	0.34	7.9	11.5			35.0		0, 20	4. 25	+			3. 224	137	7.7	72.8	10.5							+
		最大值	57.00	-49. 56	7. 70	33. 1	2. 73	19.80	15. 9	0.92		38	3.6	23. 4	17. 0	1. 19	42.1	25. 2			55, 5	~	0, 45	9, 17				7. 378	287	16. 7	85. 5	16, 4							
		数据个数	17	17	17	66	66	66	66	66	66	66	6 (66	66	66	57	57			8	8	66	66				12	12	5	5	5			_			1	-
,	and the second	平均值	54. 12	-51, 64	5. 72	28.6	2,72	18. 99	14.7	0.80	7 97	34	1.1	21.1	13. 0	0. 59	26.6	13, 9			46.0	2, 1	0. 33	5. 64	+	\vdash		4. 452	170	7.3	79. 2	13. 5						+	
	粉质黏土	均方差				2. 1	0.01	0.3	0.5	0.05	7 2	2.	3	1.0	1.6	0. 18	7.0	2.9			7.0	0.7	0.05	0, 91				1. 111	43	7.4	5, 3	2.3			-			+	-1
П	夹黏质粉土	变异系数				0, 07	0.00	0.02	0.03	0. 07	0.0	02 0,	07	0.05	0.12	0.30	0. 26	0.21			0. 15	0.31	0, 16	0.16				0. 25	0. 25	1.01	0.07	0.17							\dashv
Ц		标准值				29.1		18. 92	14.6	0.81	9					0.63	25, 0	13, 2			41.2	1,6	0.34	5. 4				3. 869	147										\dashv
T		最小值	55, 40	-56, 55 ~	1,60	25, 6	2.72	19.10	14.7	0.70	0 97	32	2.9	19.6	12.4	0.38	25.0	12.7			40.4	1.7	0.23	5. 23				1, 954	36									1	\pm
		最大值	58. 90	-52. 81	4, 80	29. 3	2, 73	19.70	15. 6	0.80	4 100	0 34	1.3	21.9	14. 2		31, 3	13. 3			62, 1		0, 34	7. 39				3. 476	97										
П		数据个数	17	17	17	6	6	6	6	6	6	6	-	6	6	6	3	3			3	3	6	6				11	11										\neg
į	松 氏 科 1	平均值	57.06	-54. 58	2, 94	27.5	2.72	19. 33	15.1	0.75	9 99	33	3.7	20.6	13. 1	0.53	28. 5	12.9			50.6	2. 2	0.30	5. 91				2, 835	64										٦,
	粉质黏土	均方差				1. 3	0.00	0.2	0.3	0. 03	7 1	0.	6	1, 0	0.7	0.08	3. 2	0.3			10.9	0.6	0.04	0.76				0.579	23										- 1
		变异系数				0, 05	0.00	0.01	0.02	0, 05	0.0	01 0.	02	0.05	0.05	0. 15	0.11	0.03			0. 22	0.25	0.13	0.13				0.20	0.36	-									
		标准值				28.5		19. 18	14.9	0.78	19					0.59	23. 7	12. 4			34. I	1, 4	0. 33	5. 3				2, 515	51										
		最小值				20.8	2.72	19.40	15. 2	0, 60	7 94	29	9.9	18.3	11.6	0,12	44.6	13.6			83. 3	1.4	0, 14	5.86				2. 533	48										\top
		最大值				27.4	2. 7	20.20	16.7	0, 75	7 99	39	9, 9	22.9	18.6	0.38	84. 7	17, 9			130. 1	2.0	0.30	11.48				5. 167	207										
		数据个数				10	10	8	8	8	8	.10	0	10	10	10	4	4			4	4	8	8				12	12										
	粉质黏土	平均值				24.0	2.73	19.79	15.9	0.67	7 96	36	6. 1	20.3	15, 8	0.24	58. 1	15.3			105, 2	1.7	0.21	8. 38				4.008	140										
	177.54	均方差				2.2	0, 0	0.3	0, 6	0.05	9 2	2.	9			-	18. 4				23.4	0.2	0.05	2.04				0.858	64										7
		变异系数				0.09	0.00	0.02			0.0	02 0.	. 08	0. 07	0.15	0.36	0.32	0. 12			0. 22	0.14	0. 26	0. 24				0. 21	0.46										
4		标准值				25. 3		19. 50	15.6	0.71	7					0. 29	37.1	13, 3			78. 5	1, 4	0.25	7. 0				3, 557	106										
													\perp																				- 3						
								-																															
					-	-	-		-				_																										
					-				-	_	+		_																										
				-	-			-	-	_		-																											
\perp																																							

无锡水文工程地质勘察院有限责任公司 徐霞客梦东方文化创意产业园住宅项目

物理力学性质指标统计表

勘察编号制图校核项目负责审核图号 62019016-1 社经 多夏 上面 拍品的 2-4

层			层底	层底	层	含水	比	重	干重	孔隙	饱和	液	塑	塑性	液性	剪切		剪切Cq		剪切	可试验	压缩	试验		标贯	单桥	锥尖	侧壁	颗0,25	粒组成	_	无侧隔 抗压	重塑土 抗压	灵	有机质	垂直後透	水平	承载特征
-	岩土名称	3	深度			率	重	度	度	比	度	限	限	指数	指数			-					mar .	100	古数 计	始报	阻力	摩阻力	~	-	<0.008	100	强度	度	含量	系数	系数	建设
号			(m)	(m)	(n)	W %	Gs	v	V,	ee	Sr %	W 1	W p	I	I_{i}	C				C	Ф	a1-2	Es1-2	N	N,	Ps	qe	fs	0, 075	0, 005		qu	dn,	St	Wu	Kv	Kh	f.
-		最小值	-	_	1. 30	-	-	-	13, 15	0.240			%	10.2		kPa	12	kPa	~	kPa	度	MPa	МРв	击	击	MPa	MPa.	kPa	mm	TEM.	inn	kPa	kPa	-	%	cm/s	cm/s	kPa
		~	~	-29. 46	~	37.6	~	~~	15. 24	0.749	~	31.9	19.9	10.7	~	17	10.2			28.6	1.2	0.32	3. 14			2. 196	0.726	28										
		数据个数		142	142	59	59	59	59	1.031		100	-	16, 2		33. 2		-	-	-	2.0	0.63	5, 54	+	-	2, 505	2, 640	66										
		平均值	-	7	-	31.5		18, 64	14. 18	0. 882		-	59	59 13. 5	59	49	49	-	-		9	59	59	-		2	87	87										
i-d-	粉质黏土	均方差	35. 00	51.55	3, 44	2.4	0.00	-	0.5	0.061	-		1.0		-			_	\rightarrow	37.1	7.7	0.42	4. 55	-	-	2. 379	1.619	38	_									_ 13
		变异系数				-	-	0.01	0. 03						0.11	1000	0.8	-	-	6.6	-	0.06	0.51	-	-	0. 222	0. 377	8										
		标准值	-			32.0	-	-	-	0.895	0.02	u. us	0.05	0.08	-			_	-	-	0. 17	-	0. 11	-		0.09	0, 23	0. 20										
-		最小值	99 5n	-25 99	L 50	-	-	-			0.1	24.0	10.1	0.0	1000	19.9		-	-	33.0		0.43	4.4			1,853	1,550	37	_									
		最大值	1000	~	~	~	~	19.30	15.43	~	94	~	18. 1	~	-	7.2	11.8			21,1	~	0. 17	4.51	100	11.6	5.830	3.431	75	3.3	52, 4	11/2							
		数据个数	-	142	-	55	55	55	15.44	55	100 55	_		11, 6	-	-		-	-	29. 1	-	0.39	10.08	-	14.5	8, 468	13. 712	281	41.0	88.9	14.5							
		平均值		-	100			18.72	-	-			55.	-	55	47	47		-			55	55	10	10	2	88	88	54	54	54							
2	黏质粉土	均方差	-	33, 53	2.02	-	-	0.3		0.845			19.5	100	1. 27	7 1	24. 2		-	24.0		0.24	7. 89	-	12.9	7. 231	6. 757	129	9.5	78. 2	-					_		1
		变异系数	-		-				0.5	0.060	-	1.3			1	-	2.3	_	-	2.7		0.04	1.08	-	0.9	1, 869	2. 172	36	9.1	7. 7	1.6							
		灰井 旅 准 值			-	30, 7	0.00	0,01	0.03	0.07	0.02	0, 05	0, 03	0. 12	-	_	-	_	-	0. 11		0. 17	0.14	-	0.07	0.26	0.32	0. 28	0.95	0.10	0.13							
+		最小值	24 60	-27 50	1 40		2 70	18.66	14. 28	0.859	0.4	20.0	200 1			8.5				22. 0		0, 25	7. 6	21.3	12. 4	2.794	6. 361	122										
		最大值	~	~	2.90	~	~	~	13. 05	0.802	94	32.2	~	11.9	~	16.3	11.0			31,0	~	0.32	3. 45			1.408	0.824	23										
		数据个数		142	142	1.00	51	51	-	1, 057	-			16. 7	-		14. 0	-	- 1	38, 1		0.55	5. 70	_	_	1.494	2. 502	47										
		平均值			-		-	-	13, 87			-	51	13, 9	51	43	43		- 1			51	51	-	-	2	88	88				_						
-3.	粉质黏土	均方差	30.10	90.00	A. 00	-	0.00	-	0.4	0.063	1	1.5	-	-	-	19.6		-	-	33.8		0.44	4.40	-	-	1. 445	1.672	32										_ 1
		变异系数	-		1	0.00	-	0.02	0. 03	0. 003	0, 01			0.08	0.09	2.5	0.7	_	-	2.5	-	0.06	0.52		-	0.062	0, 383	5										
		标准值	-		\vdash	33. 7		-	13.77	0.940	0, 01	0.04	0.05		0. 84	1	-	-		-	0.25		0. 12	-		0.04	0. 23	0. 16										
\dashv		最小值	38.00	-40. 72	2.00		-	-	14.87	0. 587	0.4	33. 3	19.0	10.00	0. 13	-	11.8	_	-	32.1	57.5	0.46	4. 3			1. 299	1.602	31	-									_
		最大值	~	~	4. 80	~	200	20, 40	16. 87	~	100	~	~	~	~	41.0	1000		- 1	66.6	~	0.17	5.91			2,534	1, 537	59 ~										
		数据个数	-	71	71	56	56	56	56	56			56	16. 9 56	56	48	48	-		110.0	-	0, 29 56	9. 41	-		2.878	3. 761	132										
		平均值	-		-	-		19.62			1.5	0.9		15. 4	100	58, 6	-	-			8	1 1000	56	+		2	85	85	-									
-1	粉质黏土	均方差	111.71	00.10	J. 41	1.6	0.00	10.9	0.4	0. 043		1. 3		-	0. 05	J	15. 1	-	-	83.3	1	0.23	7. 63	-	-	2.681	2. 758	89		-		-						2
		变异系数			-	-		0.01	0. 03		0.02	-						-	-	15.2	-	0.04	1.06	-	-	0. 246	0. 576	13										_
		标准值			-	25, 2	-	-	15. 62	0.713	0.02	0.04	U. ua	-	0. 26	-		-	_		0. 24		0.14	-	-	0.09	0. 21	0.14	-									
-		最小值	40.90	-43 46	1.30	-	-			0. 670	94	22 1	19. 4							73. 0		0.24	7.4	-	-	2.097	2. 651	86		400			-					
		最大值	~	~	-00	~	~	19.90	14.06	0. 901	~	- Chapter		~						41.8	~	0.24	4.32				1, 571 ~	53		83.9								
		数据个数		63	63	51	51	51	51	51				10, 5	-	-		-				0.44	7. 25	-	-		5. 904	156		84.6	-				1			
		平均值	-	100	-	27. 0		_		0. 761			51	13.6	51	43	43				2.0	51	51	-			19	19	2		2							
-2	粉质黏土	均方差	35.46	400 600	21.16		-	0, 3	-	0. 049	_			1.4					-	-			5. 98	-			2. 751	93		84.3								_ 1
		变异系数	-		-	-	_	_	0. 03		0. 02	_						-	_		0.5		0.60	-	-		0.962	26		0.5	1111							
		标准值	-			27.5	-			0. 772	0.02	0. 03	0.04						_		0.25		0.10	-	-		0, 35	0. 28		0.01	0.03							
_		by the list				21.0		19, 13	10.00	0. 112					0.44	30, 1	15, 4		- 14	91.3	1.7	0.31	5.8				2, 362	83										

无锡水文工程地质勘察院有限责任公司 徐霞客梦东方文化创意产业园住宅项目

物理力学性质指标统计表

勘察编号 制 图 G2019016-1 产生经

项目负责 图号 2-3

附件4:仪器校准记录、快筛记录、现场采样记录

仪器校准记录

仪器名称: 42年46至 仪器资产编号:1726中偏号 Telly it 使用部门: 校准器(标准物质) 校准日期 校准器编号 校准环境条件 校准内容 校准结果 允许误差 校准误差 校准结论 校准人 名称及型号 度: スレ ℃ 合 格尼 2049年 /月 16日 3%标准标路状. 度: 59 % 316数维杯:《 菙龘 **EX** 6 feet 7:47 Stephen 大气压: 103.3 Kpa TMEX 700 DULL-084 不合格 🗆 度: ハン ℃ 格乜 슴 WP年/月16日 度: 58 % 8370 9193 Nz 7:48 0.0 pm agen t5% 4-1/4 大气压: /0}, Kpa 不合格 🗆 16A1320 SLAK-0184 合 格 夕 度: プレ ℃ 2018年 / 月26日 #1× 度: 59 % 7:31 100 pm 000% (00 April PXOP OOL £5% 大气压: 101.3 Kpa 不合格 🗆 PEMILO JUST-OJA 8 度: 火 ℃ 合格口 2019年/月26日 316年扩发标品改 度: 60 % 重號 白莲树 SEAN 礼格推择:典 18:04 SELIM THEX 700 JUNE -0784 大气压: 103-/ Kpa 不合格 口 度: 火♪ ℃ 合格及 low年 / 月 16日 度: bc % \$3 age No 8370 PIP3 18 mx ts/. 大气压: (o): / Kpa aggin any 1647120 JUI-C-0794 不合格 🗆 度: φ₽ "C 合格/0 1/11/年 / 月 46日 langon 度: 🖟 t3% % Acopor2 cooper 40404 K47320 JUB-6-0491 大气压: /// Kpa 不合格 🗆

现场仪器校准照片:

任务编号: 20190160

項目名称: 山阳市往雲 安 延 黄化头系生 湖东北路南地峡

采样日期: 2018/、20

	DE 434. Ver ein			X VOX	1000	1/14000 H	0.0.1	70	or to to	44年			proping	<i>y</i>	_
采样点位	米秤深度 (m)	气味、污染 痕迹、	检测结果	砷	镉	铬	铅				1 1	-		$\overline{}$	Т
Τį	ez	THE PLEASE OF	ol .	4.355									+	+	+
TΣ	3. L	/	al	18.154	A106	45.92	35 868	anij			_				\dagger
73	al ·	/	0,1	(NZ SI	wieb	11.26	solel	0.016	(4.3)8	10.206	38.7×P				†
74	ما.و		41	2.73/	0.10)			0.015	7% 4P8	20.627	12178				†
is	a.V		al	Post	6413	6.00	MA33	0.01)							\top
76	ماده		0.1	14. 818	0.017	44 ks i	to-P88	448	83-193	21.2P7	22-157				T
7)	4.2		a.L	13:061	ann	21. 916	41.949	ast	SLEEP	15, 10)	1K-83)				T
ī8	al		OL.	4.15	Δd	s1.785	1.4:359	0.01	117, 150	20.093	21337				T
īP	0.1		94	9.19	4019	3).00	inter	4012	61.297	iulb	18787				
Tio	az		8-1	11:5)	ocup	52.729	70.37 <u>Y</u>	asd	#7.67P	32.489	24.243				T
Til	4.5		41	15,768	كاف	2A 345	12.2	aery	26/73	Wary.	157.FX8				
Til	σ. ኒ		aj	13.368	0.067	をなる	26.426	947	89.164	24.136	24.782				
Tr}	0.2	/	64	4-5570	a •45	3266P	¥,70L	aois	80.247	12.PCC	GA XV3				
74	9.2	Y	~{	6.5%	9.074	21.156	msal	0.007	47-PP/	ro. 382	206-9				
PLM 7720 1143	2-078-1	XRF 型号	THE 700 361	13-6-018-1	ł	,	大气背线	į.				自封袋			
P. Inhan		XRF 最低检测限								0.0				Open	
	71 72 73 74 75 76 77 78 77 78 710 711 712 713 714 714 714 714 717 718	77 82 73 AL 73 AL 74 8.2 75 8.2 76 8.2 77 8.2 78 8.2 77 8.2 78 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2 77 8.2	采样点位 采样深度 (m) 汚染機法 (颜色、 污染機法 (颜色、 清染 療迹、 油状物等) ブレ カレ ブウ カレ ブウ カレ ブウ カレ ブク カレ ブロ カレ ブロ カレ ブロ カレ ブロ カレ ブル カル アム アル アル カル アル カル アル カル アル アル アル アル <td< td=""><td>采样点位 采样深度 (m) 污染描述 (颜色、 位数结果 (ppm) 71 62 64 72 61 73 61 74 61 75 61 76 61 77 62 78 61 710 62 711 61 712 62 713 61 714 62 715 64 716 64 717 64 718 64 710 64 711 64 712 64 713 64 714 64 715 64 716 717 717 718 718 719 719 710 710 710 711 711 712 713 713 714 714 715 715 716 716 717 717 718 718 719 719 710 710 710 710 710 710 710</td><td>采样点位 采样深度 (m) 污染描述 (颜色、 控测结果 (ppm)) では、污染 痕迹、油状物等) 中 17 01 4.355 12 01 4.355 13 0.1 18 549 15 0.1 0.1 18 549 15 0.1 0.1 14 548 17 0.1 0.1 0.1 15 0.1 18 0.1 0.1 0.1 15 0.1 18 0.1 0.1 0.1 15 0.1 10 0.1 0.1 0.1 15 0.1 11 0.1 0.1 0.1 0.1 0.1 11 0.1 0.1 0.1 0.1 0.1 0.1 11 0.1</td><td> 采样点位 采样点位 (m) 行機株、汚染 療迹、油状物等) (ppm) 神 編 71 62 61 62 62 63 64 65 64 65 64 65 66 67 61 62 63 64 64 65 64 65 66 67 68 67 67 68 67 67 68 67 61 62 63 64 65 66 67 67</td><td> 采样点位 采样点位 (m) 行味、污染 療迹、油状物等) (ppm) 神 編 銘 では、汚染 療迹、油状物等) の1 4.355 *4.59 *4.66 *2.79* では、 たい</td><td></td><td> 采样深度 (m) 一 深株治途 (瀬色、 何味、 污染 療迹、 油状物等) 一 では (では、 汚染 療迹、 油状物等) 一 では (の) では (の)</td><td></td><td></td><td> 深祥原位 宋祥原度 行染指法 (颜色、</td><td> </td><td></td><td></td></td<>	采样点位 采样深度 (m) 污染描述 (颜色、 位数结果 (ppm) 71 62 64 72 61 73 61 74 61 75 61 76 61 77 62 78 61 710 62 711 61 712 62 713 61 714 62 715 64 716 64 717 64 718 64 710 64 711 64 712 64 713 64 714 64 715 64 716 717 717 718 718 719 719 710 710 710 711 711 712 713 713 714 714 715 715 716 716 717 717 718 718 719 719 710 710 710 710 710 710 710	采样点位 采样深度 (m) 污染描述 (颜色、 控测结果 (ppm)) では、污染 痕迹、油状物等) 中 17 01 4.355 12 01 4.355 13 0.1 18 549 15 0.1 0.1 18 549 15 0.1 0.1 14 548 17 0.1 0.1 0.1 15 0.1 18 0.1 0.1 0.1 15 0.1 18 0.1 0.1 0.1 15 0.1 10 0.1 0.1 0.1 15 0.1 11 0.1 0.1 0.1 0.1 0.1 11 0.1 0.1 0.1 0.1 0.1 0.1 11 0.1	 采样点位 采样点位 (m) 行機株、汚染 療迹、油状物等) (ppm) 神 編 71 62 61 62 62 63 64 65 64 65 64 65 66 67 61 62 63 64 64 65 64 65 66 67 68 67 67 68 67 67 68 67 61 62 63 64 65 66 67 67	 采样点位 采样点位 (m) 行味、污染 療迹、油状物等) (ppm) 神 編 銘 では、汚染 療迹、油状物等) の1 4.355 *4.59 *4.66 *2.79* では、 たい		 采样深度 (m) 一 深株治途 (瀬色、 何味、 污染 療迹、 油状物等) 一 では (では、 汚染 療迹、 油状物等) 一 では (の) では (の)			深祥原位 宋祥原度 行染指法 (颜色、			

备注:

采样: 大学 10 大

复核: 严强

审核:___

任务编号: 20190160P

項目名称: 以門前往雪字随黄肥大岛羊、烟花村岛南的旅

采样日期: lay#/\\\

p	1		污染描述(颜色、	PID	X10768	Q . 10/11/2	-1403NO	O'N	-	n= 14.50	W & + 188		<u>л-тгыжи: <i>№</i>1</u>	E/VP		_
样品编号	采样点位	采样深度 (m)	气味、污染 痕迹、	检测结果					$\overline{}$			(mg/kg)		_		_
		(m)	油状物等)	(ppm)	砷	镉	铬	铅	汞	锌	镍	铜				
	7/1	ΔL		ar	4.13	0,10	44.162	5.06	0.0/2	22.54	nels	9K 3W				
	716	4.7	/	-1	(e.612	4.09	82.9L6	*11	طوة	2), 11)	p).376	24591				
	למ	ar	/	-1	7.647	e.csp	59.16	15.111	4019	33.eM	29. 275	34.383				Γ
	T18	ላኔ		01	n.si	0.046	12.38	33. W.S	0.036	1º OPI	27.06	32.18				Γ
	rip	6.1		0.2	a-3	4./37	Sa.(2)	тезер	0.0190	80.007	33.566	22576				
	100	ΔL		બ	9.638	0125	69.181	15.058	asip	108-384	17£ 784	ve.16				
	721	+.E	/	м	10.979	413	33, 249	}n4†	40)	2(640)	সমী	15.9				
	ゴンレ	مد		al	13.3%	4091	38.94	2(.727	0,019	#3.745°	<i>चंत्र</i> ह	38.64				
	721	42	/	Α!	€.56b	aire	72.00	अ.भा	aous	68.86	36.618	17.946				
	724	ø.2		-1	1. 893	m175	10.441	James .	4033	85. 28)	38.488	21.09%				
	TUS	ar		a b	(3,74)	0.096	19:00)	14643	p. e b)	7). P26	MIN	2P. 488				
	726	4-12-		41	15.012	AHA	\$2-407	26.712	0006	73.207	\$2.top	NT.TS				
	727	44	/	ام	保好	900	32-813	12.26	a01]	14.XP)	28.189	22.138				
	728	بادف.	Y	al	1.212	0.176	istor	32.703	0.027	P2.730	26.018	31.672				
PID 型号	PEALT320 JUL	6-078-1	XRF 型号	TrueX 700	363-6-0	78-1	,	大气背	景				自封袋			
D 最低检测限	0.1900		XRF 最低检测限					PID值			oroppo	,	PID值	a	gpm -	
r 34-	1				-										_	_

备注:

复核: 河南

共华页 第2页

任务编号: 20240600

項目名称。以外抗体震多粒黄肥皮器子、肉庄村的南北快

采样日期: 201/k/. 26-

样品编号	采样点位	(m)	气味、污染 痕迹、 油状物等)	检测结果 (ppm)	砷	镉	铬	铅	汞	锌	镍	铜					
	729	9.2) a1	12942	0.15	35.197	11.44	angi	P2-P36	22.44	UR 533					
	730	σι	/	4	12.824	0.097	+6.614	16.12	P=17	84.476	25.32	1960P#					
	T3	かし		AL	9.4	4485	# N/7	३० १५५	coop	¥62.4X	4151	(2-(8)					
	731	ez.		ab	n st	4/53	11.44	કેદ, મુર્જ	ast	18 <i>4</i> [3	_{አያ} .ነ የዩ	11,100					
	T33	0.2		e i	9.389	0.197	φ <u>ε</u> 782	39. SIE	4033	3F.18K	16271	162.11h					
	T34	aι		*4	(8.18)	AII)	15.367	74.614	acup	PL 1/3	made	30.60					
	735	aı		04	14.399	~62 f	54-787	31.45	ANY	87,38¥	reish	24-192					
	736	ΑŁ		4í	17.18.19	4/16	65-663	14.468	۹.013	8P. 184	24.0 45	24 EV7					
	737	ar		41	16.181	ajox	61.825	34.16	20%	10899	24-991	18481					
	738	az		aL	13.34	#103	42-41	22.6%	**	197.RK	23, 72 0	ne old					
	ΒP	aL	/	al	10.5%	awr	11. 977	32.983	0.4%	5 P. 158	34.06	22.49					
	740	-az		al	8.49	ary	62.039	52,018	AOIF	7P.483	27.X76	14694					
	7 1/	OI	/	A.I	15-813	0,143	71.206	H.28/	0.012	skop	36.813ª	21.678					
	742	0.6	Y	4l	6.411	0-0\$7	611 98 .	(ROSP	well	52-4PP	12242	(2:23)e					
PID 型号	PEMTSON IK	160184	XRF 젶号	imeXXX IM	34-018-1		7	大气背边	ŧ				自≢	才袋			
D 最低检测限	0.1984		XRF 最低检测限					PID值		0	2. Open			値	00	la-	

备注:

复核: 心影

审核: _____

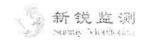
任务编号:)AWOILDP

项目名称:12例本往露空遊童18点数至 湖东村旅台 粉块

要量日期、)かんが

	743	aL	/	6.7	7.338	0.017	49.874	11 609	0.003	24.813	14, 70%	18.198					
	144	AL		0-1	0.385	AGT	33.477	y).47#	4.46	HROPE	35, aPs	0.19					
	755	AL		-/	7.7+6	0,137	uffit	28.440	ariy	101.302	60-743	12346					
	746	6-2		42	6.00	a. 483	11-648	12-86	a seg	s (1P)	d- P3	12.077					
	747	d,r		ai	11.781	AIS	40.02	27.076	0.418	unt	19.246	16-61					
	748	ø.		4)	***	0.031	12h277	app	noot	80166)	7.753	3.11					
	749	a)		41	10.16	492	63.49	2).8%	gen	150.3/1	14.538	38.163					
	750.	4.1	/	0.}	72.088	9159	15. 24	26.188	arege	nrel	>5·28	¥7.1 87					
PID 型号	PLM7320 161	14-0784	XRF 型号	injektoo J	143.0018	4	-	大气背红	t				自主	129			
D 最低检测限	O lapon		XRF 最低检测限					PID 值			aggregation		PID		ag)p-,	

备注:



地表水采样检测原始记录表 項目名為: 124縣後後後後

任务编号: 2019/609

采样日期: 2019.1.1.1

	A 00000				以の時間は、十一日	4175 6	1.040								-	7T P 77	1: 20.		
	标准缓冲液				Street 19	标准	缓冲液	II : 1	RIB						环	境温度	(°C)	6.9	
pH 校准		被[测定值:4.9]		温度:	ial*C	标准	缓冲液	17 測量	建值,引	1		禮	度: 10.	19%	4	TÆ(kP	a)	1014	
	标准缓冲剂	夜1回測: 6.8/		温度:	NE	质控	pH 标	准溶液	值: 88		pH :	标准将	液测定	值: 6:	91		温度:	102°L	
								聚样		保存				現場側	定记录				
样品集号	河(湖)名称	点位名称	采样 时间	寒官描述 (願色、气味、浮油)	检测项目	前处理 方式	样品统 存客器	44-200	保存剂 (填序号)		水温 (°C)	pR 值(注 仪器 读数	无量(排) 测量 结果	溶解氧 (mg/L)	电导率 (pS/cm)	透明度 (cm)	氧化还 原电位 (mV)	独反 (NTV)	各往
20)YesibofWi+i	/	М	14:16	改量 Efryond	m. Pl. N. H.	1	1	54	3	o)	7.4	8-47	8.4	/	-	-	1	3 1	
					6.4	1	2	300	7	123									
					idgy	1	1	700	8025AL 026KL/	(13									
					/33	1	1	700	641.180 1841	ps									
					5 VO632.	1	ν	iong	/	OF .									
					Mitter.	1	ν	144)(2	/	(L)									
					B苹果理Sattracta)	1	V	(=40	5	n)									
					(外)社主的地。	1	ı	4ex3	P	723									
20matoquates	/	/	/	/	VOLIZE STEE	1	ν	क्रम	P	ns									
点位经纬度:		现场测定仪器	ደረጉ 🐼 #	10.11.60.0		田会	केवा ३३८ । ज	Adk MI 7	T. 200 42./t	175124	AT 04				du 11				
126.31977 30.31977 30.31977	wj	Ø\$x836	45 <u>J/</u>	2号及編号: 50-2-014-26 東他 10-7-04-23 Webson	g: 344-c=9-36	注 1: ③确器 ®NaC 真至抗	保存剂。 (1%) (pH > 1) (设完全:	(3) (3) (3) (12) (11) (11) (11) (11) (11)	及现场传 碳酸、pH pH ~ 2: 抗坏血酸, 碳酸镁是2 漂,②避;	≤2: ②硫 ⑥碘酸 pl 盐酸: 便 虫液: ②	酸。p氏 H4+碳酸 乙酸锌 其他保存	≤I; ⑤研 網: ⑦N 溶液+N 溶液+N	laOH,p laOH+数 主明。	H8~9; t氧化剂	否为列 业区等 点位力	边车境; 水区回2	K区、有 固述包括	无層民区	神行口、是 /工业区/农 脉浮物或表
采样及现场检 日191,2-2022 日 GB/T 13195-19 日11147-202 (j 日 HJ 506-2009 (i	91(水温) 5H 債)	□ 《水和底水散》 □ 《水和底水散》	则分析方法 则分析方法	t)(第四版增补版)(20 t)(第四版增补版)(20	102 年)3.1.9 电导率仪法 102 年)3.1.52 赛氏盘括 102 年)3.1.10 氧化还原电位	④其他 注 3: 注 4:	保存方: ①P 为课 前处理力	式直接性 乙烯瓶 方式: ①		i 为硬质和 in: ②静]	5瑪嶽 閏 60 mi	n: ()A	<u>ሱ 2000 ፣</u>	rmin, 1	₹ 27. 1€	万株火	•		

地表水采样检测原始记录表

任务编号: 201/6/69

项目名称: MAX传密交流等URAMY LANGLISE GOCK.

采样日期: Love lud

				发冬四季吃火烧了.6月		200								75	11 147%	11 <i>0</i> 0%	· land	
					标准	缓冲液	II : }	P.18						环 ‡	竟温度	(°C)	6.9	
标准缓冲》	被〔测定值: ╽.	9/	温度: //	1.1%	标准	缓冲液	11 測量	医值: 9	}2		22	度: lo.	12	4	(Æ(kP	a)	102/	
标准缓冲剂	夜1回週:491				质控	pH标	准溶液	(1i i: 6-8	76	pН	标准溶	液测定	值: 6.91			温度:		
河(湖)名称	点位名称	采样 时間	傷官指述 (颜色、气味、浮油)	检测项目				保存剂 (填序号)		水温 (°C)	校器	光量網) 調量 結果				原电位	独度 (NTU)	备注
,	wi	14:06	法建筑和的	het Nid	1	1	254	3	(2)	7.4		8.4	/	/	_	-	B.	
				44	(2	200	7	IJ/S									
				₩	1	ſ	5-6	4-17-4	ıνλ									
				85	1	ſ	5	1064 1064	os									
				SVOL33K	1	ı	(-44	_	45									
				为汉皇长1712	1	ı	l	/	103									
				While Aprel	1	2	4 ~ ×3	9	۸)									
	ZSX836 ZKester15500	編号 <u>1/</u> 編号 <u>2/</u>	13-C-07476 It/le 13-7-04478 WG1-500	de Web C angle 26.	注 1: ④磷酸 ⑧NbC 直至流	保存剂名 (, 1%;) H. pH> (论完全;	孫: ① 多盐酸, 12: 學 ①1%	強酸,pH pH≤2; 抗坏血酸, 酸酸镁量2	<2;②確 (事務 成 pi ・益酸; (ē ・ 独 ; (②)	酸。pH H4+碳酸 多乙酸锌 其他保存	≤L: ②騎 2何: ⑦N 落液 + N 7削直接2	MOH,p MOH+数 主明。	H8~9; L氧化剂	点位周 否为死 业区等 点位水	边环境: 水区回z 质表观:	K区、有: 描述包括	无居民区	/ <u>T.W.K.</u> /3
·测依据: 91 (水温) pB 值) 溶解氧)	□ (水和液水點 □ √水和废水製	测分析方法	表) (第四版増补版) (20)	02年) 3.1.5.2 塞氏盘法	④共催 注 3: 注 4:	保存方式 ②2 为课 前处理力	式車接往 乙烯瓶 式: ①	明。 (権)②X 静置 30 m	· 为硬质和 ·in:②静)	包霉瓶 星 60 mi	n: (3A 4	ሱ 2000 τ	/min∗1	Or. 19	元素失	.		
	标准缓冲的 标准缓冲的 有(期)名称	标准缓冲液 「回測: 1.9{	标准缓冲液 [测定值: 6.9] 标准缓冲液 [回测: 6.2] (湖)名称 点位名称 采样 时间 (标准缓冲液 「 阅定值: 1.4 温度:	探袖緩冲液 側定値: 1.9 温度: 10.1% 10.1% 10.1% 10.1% 10.1% 10.1%	探離緩冲液 側定値:	探離緩冲液 「 側定値 : 1.9 温度 : 10.1	「	振龍媛冲液 側定値: 6.4 温度: 10.12 振龍媛冲液 測定値: 9.4 振龍媛冲液 測定値: 9.4 振龍媛 一次 原控: 10.12 振鹿媛 一次 原控: 10.12 月本 日本 日本 日本 日本 日本 日本 日本	振龍媛冲液 1 側定値: 1.41 温度: 10.12	振在緩冲液 側定値	振龍媛冲液 [側定値: 1.4] 温度: 10.1℃	福度: 10.19 孫権護沖液 I 副渡: 10.18 四月 所作 宿務値: 4.88 四月 所作 (四月 一月 大田	「「	「	振権機冲液 「 測定値 : 5 月 温度: 10 1 2	振電機冲液 1 例定値、5 引 温度: 15 1/2	「

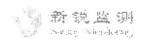
复核: M 形

粮: 差學兒

共华页,第之页

地表水采样检测原始记录表

任务编号: Longolbo?


项目名称: 小侧右往至字位音比光路至, 阿庇杜然后的花.

采样日期: 100/2/16

1723 46 41	Des A Ditoo		- 2	A DISTANCE NAMED 13	是多四旦吃大锅子.16	上 13% [3	alov.								T	作口州	12 FOM	21.46		
	标准缓冲						缓冲液	U : 9	218						环境	竟温度	(°C)	61		
ρΗ校准	标准缓冲	液 [測定值: 6.	?/	温度:	1912	标准	缓冲液	Ⅱ 測算	直值: 宏	L		W	度: (0	12.	۵	(Æ(kP	- P~)			
	标准缓冲	被 I 回翘: 6.91		溫度:	a1º2	质控	pH标	准溶液	值: 6.8	b	pН	标准溶	液類定	值: 6.9	1		温度:	case		
								聚棒		保存				現场测	度记录					
样品编号	河(湖)名森	点位名称	采样 时间	學古描述 (蘇色、气味、評油)	检测项目	前处理 方式	样品值 存容器	体权 (mal)	保存剂 (填序号)		水型 (*C)	pH值() 仪器 突数	无量期) 测量 结果		电导本 (µS/cm)	遊明度 (cm)	無化还 原电位 (csV)	被度 (NTV)	各注	
somellofus+1	/	us	1949	维维和和	M.P. Nide	ļ	-(Soe	3	iis	ن ,ز	8.7	8.4	/	/	_	/	33		
					600	(ı	54	,	as										
					Hg	ſ	1	ji.	10424 10424	[23										
					As	1	1	\$00	41165	(V)										
					SVOGSE.	ſ	L	icce	1	m										
					3K#4712	1	L	į one	/	M										
					ラ芒英州といればない。	1	ı	tore	5	125										
					10642786.30 PLE	1	ı	19×3	١	(2)										
点位经纬度: 140.310317 120.310317		注 1: ④前题 ⑧NaC 直至流 注 2: ④其他 注 3:	保存剂等 2.1%; 2H. pH> 1淀完全; 保存方式 保存方式 ()P 为集	4条: ① ⑤盆酸, 12: ⑨ ①1% に: ①冷 式直接台	」 又現場份 東H≤2: 抗酸酸 (散氏 散素) (大本 で 大本 で で の で の の の の の の の の の の の の の	≤2: ②確 ⑥磷酸 pl 盐酸; 億 ★液: ②标: 九: ③标:	融,pH H4+硫酸 好乙酸锌 其他保有 整完好。 玻璃瓶	≤1; ⑧離 注網: ⑦N 溶液+N 溶液+N 深刻直接; 采取有效	iaOH,g iaOH+i 注明。 故臧震指	pH8-9; 九氧化剂 進;	香为英 业区等 点位水	边环境 水区回2	水区、有 描述包括	过另看走	持口、是 工业区/次 特殊教教					
口 HI 1147-202(口 HI 506-2009(口 其他:	pH 值) 格解乳〉	□ 《水和废水監 □ HJ 1075-2019	测分析方式	な。(新国版権 70歳/(20 法)(第四版権补僱)(20	102 年)3.1.10 氧化还原电位	min; (à2-	④离心 2	:000 r/m	in, 2 min	; இல ம	m 鄭阿i	diet. (8)	0.45 µm	建模过						
		xn 4 1			- 1						25 8	122								

复核: 一种元

共华页,第}页

地表水采样检测原始记录表

項目名称:山阳市诗密文题黄 优长路华、烟兰州路南地北 任务编号: 2,020601609 采样日期 201/2 1.16 标准缓冲流手。 标准缓冲液Ⅱ: 环境温度(°C) 标准缓冲液 I 测定值: oH 校准 温度: 标准缓冲波 [] 测定值: 温度: 气压(kPa) 1031 标准缓冲液 [回溯: 温度: 质控 pH 标准溶液值: pH 标准溶液测定值: 温度: 现场测定记录 飛棒 保存 采律 感官指述 前处理 样品储 保存機 样品编号 河(湖)名称 点位名称 pR 值(无规纲) 氧化还 检套项目 体积 方式 各性 水溫 电导率 透明度 注度 附嗣 (競色、气味、浮油) 分式 存容器 (城序号) 以电位 (m) (填序号) 仪器 测量 (°C) (uS/cm) (cm) (mg/L) (MTU) 读数 结果 (mV) 4. N. N. la 20MORDEWALL 3 500 123 64 Z 500 7 a¥. to her 03 44 ſ 500 6344 Dolant (++ Sell! 5 VOL5316 (6-0 7 aι ~ 35/4 #KZ 7K 100 at. Σ Through the course ſ 5 z 1040 132 131 VOLETTE BIRES 40xs 点位经纬度: 现场测定仪器设备型号及编号: 固定剂添加情况及现场保存运输条件: 备注: 注 1. 保存剂名称: ①確酸, pH≤2; ②硫酸, pH≤1; ③硝酸, pH<2; ④硝酸, 1%; ⑤盐酸, pH≤2; ⑥磷酸 pH4+硫酸铜; ⑦NaOH, pH8~9, □SX836 点位周边环境描述包括:有无律污口、是 Ekester 15500 # 3 34-7-7423 否为死水区回水区、有无居民区/工业区/次 ⑧NaOH, pH>12; ⑨抗坏血酸, 盐酸; ⑩乙酸锌溶液+NaOH+抗氧化剂 业区等。 直至沉淀完全: (1)1%碳酸使悬浊液: (2)其他保存剂直接注明。 点位术质表观描述包括。有无悬浮物或泥 注 2: 保存方式: ①冷胶、②避光: ②标签完好, 采取有效或常措施。 沙. 有无薬类等、 ④其他保存方式直接注明。 采样及现场检测依据: 注 3: ①P 为聚乙烯醛(酮)②G 为硬质玻璃瓶 D' HJ 91,2-2022 □ 《水和炭水监测分析方法》(第四质增补质)(2002年) 3.1.9 电导率仪法 技 4: 前处理方式: ①静置 30 min; ②静置 60 min; ②富心 2000 min; Ⅰ □ (水和度水监测分析方法) (集团板增补板) (2002年) 3.1.5.2 察氏盘法 □ GB/T 13195-1991 (水温) □ HJ 1147-202 (pH 值) min: ①高心 2000 z/min. 2 min: ⑤63 um 新門社建, ⑥0.45 um 独康社 □ 《水和胶水监测分析方法》(第四板增补板)(2002年)3.1.10 氧化还原电位 □ HJ 506-2009 (溶解制) □ HD 1075-2019 (速度) □ 其倫:

土壤(底质)采样原始记录

任务编号: 2	mpollof	項目名称: [20]	林德客登世	关路多以胜物	经后始税.	采样日期: 201/1.16
样品编号	采样点位	经纬度	采样深度	采样量	性状 (色、嗅、状态)	检测项目
Zarrailop TSH-1-1	إلاآ	120.31 \$37 ¥ 31.70107 \$	+ 0-0.2m	1 by	墨色编妆底呢	THE bull kg. N: As Id 64. VOLUE SVOISION \$ 84.
Zamado PT5244	752	31. 36784 31. 36784	the or arm	164	野湖地	Subtricumen
2014016087-1	וצד		Ato-alm	16/	BER HU.	plate. In. Ph. Hg. Ni-183. Ld. 64. S VOLSIONE EAS. vol. 27th
20Worker 1Kiz4	1				/	Wohring.
roseptop tope 2	/	/	1	/	/	
采样及现场检测作 □ HU/T 166	衣 据 :	采样工具: 点心舒	· 非数据数3 】	# .	备注 (平面位置图):	2/1
2 HJ/T 91-2002 (1	章节 4.3 底质)					
1						

附件5:现场照片

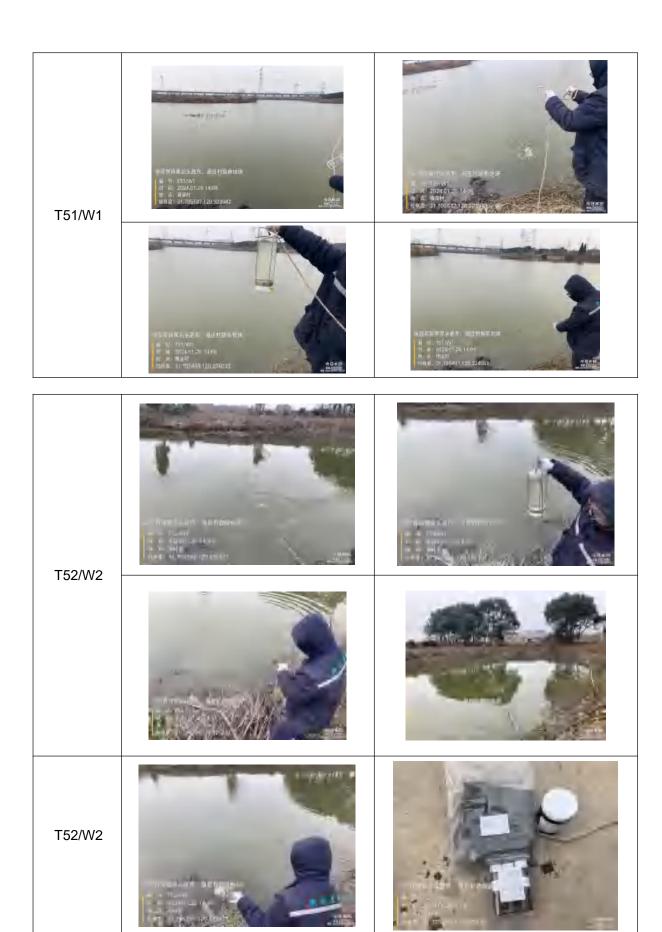
点位	取样	PID检测	XRF检测
T1			Adjunction of the second of th
T2		TANAXARA, MARIEMAN	
Т3			
T4			AND THE STATE OF T
Т5		STREET, IN	

点位	取样	PID检测	XRF检测
Т6		Total Ass	
Т7			COMMANDA, AZHRANA COMMANDA, AZHRANA COMMANDA
Т8			THE TANK THE
Т9		The second secon	Control of the second s
T10		THE PARTY OF THE P	

点位	取样	PID检测	XRF检测
T11			
T12		CONTRACTOR AND DESCRIPTION OF THE PROPERTY OF	
T13			- (II)
T14			
T15		MAN TO THE PARTY OF THE PARTY O	

点位	取样	PID检测	XRF检测
T16		MAXAU SAMI AND	The state of the s
T17			FIGURE STATES
T18		The Control of the Co	
T19			
T20			AND VAIL STILL STATE OF THE STA

点位	取样	PID检测	XRF检测
T21			TO THE STATE OF TH
T22	Control of the contro	Applications of the second sec	TAN ESHERMAR TOTAL III
T23			
T24			That I was a second
T25		THANKUR, MACH	


点位	取样	PID检测	XRF检测
T26			A ALL AND A SECRETARY
T27		SASPARCANN, COLD. SASPARCANN, C	
T28			
T29			And sheart
Т30		A STERNAL TO STERNAL T	Service Styleon

点位	取样	PID检测	XRF检测
T31		e S	
T32			
Т33			
T34			
T35			

点位	取样	PID检测	XRF检测
T36	/		/
Т37			
Т38		11 HAZAI	
Т39			
T40			

点位	取样	PID检测	XRF检测
T41			
T42			
T43			
T44		AND THE STATE OF T	
T45			

点位	取样	PID检测	XRF检测
T46			The second of th
T47			Control year
T48		HITMARADE, LA	
T49			The state of the s
T50			

附件6:实验室检测报告

检测报告

(2024) 新锐 (综) 字第 (01609) 号

项目名称 江阴市徐霞客镇黄泥头路东、湖庄村路南地块

委托单位 江阴市环保集团有限公司

> 江苏新锐环境监测有限公司 二〇二四年二月

检测报告说明

- 一、检测报告无检验检测专用章、骑缝章、签发人签字无效。
- 二、本报告只对本次采样/样品检测项目结果负责,不对送样样品来源负责,报告中如由客户提供的限值、参考标准等仅供参考。
- 三、未经本公司书面批准,不得涂改、增删、部分复制(全文复制除 外)检测报告,不得用于商品广告。

四、对本报告有疑议,请在收到报告10个工作日内与本公司联系,逾期不予受理,无法保存、复现的样品不予受理。

江苏新锐环境监测有限公司

联系地址: 江苏省张家港经济开发区杨含镇新泾西路2号

邮政编码: 215600

联系电话: 0512-35022007

企业邮箱: jiangsuxinruj@163. com

江苏新锐环境监测有限公司

检测报告

委托单位	江阴市环保集团有限公司	地址	江阴市香山路158号
项目名称	红阴市徐霞客镇黄泥头路东、湖庄村 路南地块	项目地址	江阴市
联系人	戚彦妮	电话	13906162573
现场检测人员	朱军、施謇凯	现场检测日期	2024年1月26日
实验室分析人员	顾嘉辉、钱字滿等	实验室分析日期	2024年1月27日-2月1日
检测内容	院、挥发性有机物(VOCs)(1,1-二) 顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯 二氯丙烷、甲苯、1,1,2-三氯乙烷、四: 邻-二甲苯、苯乙烯、1,1,2,2-四氯乙烷 萘)、半挥发性有机物(SVOCs)(表 苯并(k)荧蒽、茚并(1,2,3-cd)芘、二苯 底质(沉积物): 砷、镉、六价等 性有机物(VOCs)(1,1-二氯乙烯、二乙烯、氯仿、1,1,1-三氯乙烷、四氯化 1,1,2-三氯乙烷、四氯乙烯、氯苯、1,1 烯、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷 性有机物(SVOCs)(2-氯苯酚、硝基 荧蒽、苯并(a) 芘、茚并(1,2,3-cd)	乙烷、四氯化碳、苯氯乙烷、四氯化碳、苯氯乙烯、氯苯、1,1,1,1,1,1,2,2,3,3,3,3,4,2,2,3,4,1,2,2,3,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,3,4,4,2,4,4,4,4	、1,2-二氟乙烷、三氟乙烯、1,2- ,2-四氟乙烷、乙苯、间,对-二甲苯 ,4-二氯苯、1,2-二氯苯、氯乙烯、 基苯)、多环芳烃(苯并(a)蒽、菌 蒽、苯并(a)芘) 、石油烃(C ₁₀ -C ₄₀)、苯胺、挥发 氯乙烯、1,1-二氯乙烷、顺-1,2-二氯 乙烷、甲苯、、二氟乙烷、甲苯、苯乙氧、一种二甲苯、苯乙氧、二甲苯、苯乙烯、氯乙烯)、半挥数
检测依据	见附表一		
检测仪器	见附表二		
质量统计表	见附表三		
測点示意图	见附图 t	The state of	THE DESIGNATION OF THE PERSON

江苏新锐环境监测有限公司 畔 北 豪 1

检测类别: 地表水

W1	中毒本科				任务编号: 202401609
2024016699W1-1-1 (検養、无身味、无容油 (検養、足身味、无容油 単位 検出限 上2024.1.26 技織結果 元量/ / 8.4 大の0004 mg/L 0.00005 ND ND mg/L 0.00009 0.00014 ND mg/L 0.00009 0.00014 ND mg/L 0.00006 0.000070 ND mg/L 0.00006 0.000070 ND mg/L 0.00006 0.000070 ND	米牛坦点			W1	W2
单位 検出限 2024.1.26 校園结果 元量物 / 8.4 校園结果 元量物 / 8.4 MD MD mg/L 0.00005 ND ND mg/L 0.00004 ND ND mg/L 0.00004 ND ND mg/L 0.00006 0.000070 ND mg/L 0.001 ND ND mg/L 0.001 ND ND	样品编号			202401609W1-1-1	202401609WZ-1-1
単位 检出限 元量約 / 8.4 mg/L 0.0003 0.0004 mg/L 0.00008 ND mg/L 0.00008 0.00048 mg/L 0.00009 0.000048 mg/L 0.00000 0.000014 mg/L 0.00000 ND mg/L 0.00000 0.000010 mg/L 0.00000 0.000070 mg/L 0.001 ND	样品状态			微黄、无异味、无浮油	微黄、无异珠、无浮油
単位 検出限 8.4 8.5	采样日期			2024.1.26	2024.1.26
元量約 / 8.4 mg/L 0.0003 0.0004 mg/L 0.0004 ND mg/L 0.00048 ND mg/L 0.00004 ND mg/L 0.00004 ND mg/L 0.00006 0.000070 mg/L 0.00006 0.000070 mg/L 0.01 ND	检测项目	单位	松出頭	位通知	
mg/L 0.0003 mg/L 0.00005 mg/L 0.00008 mg/L 0.00009 mg/L 0.00004 mg/L 0.00006 mg/L 0.00006	pH值	无量纲	1		4.8
mg/L 0.00065 mg/L 0.0008 mg/L 0.00009 mg/L 0.00004 mg/L 0.00006 mg/L 0.00006 mg/L 0.00006	盘	mg/L	0.0003	0.0004	0.0004
mg/L 0.0008 mg/L 0.00009 mg/L 0.00004 mg/L 0.00006 mg/L 0.00006	攤	mg/L	0.00005	QN	QN
mg/L 0.00008 mg/L 0.00009 mg/L 0.00006 mg/L 0.00006	六 合格	mg/L	0.004	CIN	QN
mg/L 0.00009 mg/L 0.00004 mg/L 0.00006 mg/L 0.01	*	mg/L	0.00008	0.00048	0.00082
mg/L 0.00004 mg/L 0.00006 mg/L 0.01	報	mg/L	6000000	0.00014	0.00027
mg/L 0.00006 mg/L 0.01	来	mg/L	0.00004	ON	ND
mg/L 0.01	#	mg/L	9000000	0.00070	0.00071
	可萃取性石油烃 (Clo-Cao)	mg/L	0.01	ND	0.01
無用点 ng/L 0.0009 ND	复甲烷	mg/L	0.0009	QN	Q.

1、ND表示未检出; 2、pH值检测时, 202401609W1-1-1样品水温为7.4℃, 202401609W2-1-1样品水温为7.3℃。 以下空白

第2页共16页

(2024)新锐(综)字第(01609)号

江苏新锐环境监测有限公司检测结果

检测类别:水质

	样品编号	1000		202401609W1-1-1	202401609W2-1-1
	样品状态			微黄、无异味、无容油	微黄、无异味、无浮油
	采样日期	1		2024.1.26	2024.1.26
序号	检测项目	单位	松出限	检测	检测结果
	氟乙烯	1/an	1.5	MD	ND
	1,1-二氟乙烯	T/Sri	1.2	ND	QN
	二氟甲烷	µg/L	0.1	QN	ND
	反式-1,2二氯乙烯	T/8n	1.1	Ŋ	ND
	1,1-二氟乙烷	T/8rl	1.2	QN	ND
	顺式-1,2-二氟乙烯	T/Bri	1.2	ND	ND
VOCs	氣仿	T/8nt	1.4	ND	ND
	1,1,1-三氟乙烷	T/Sri	1.4	ND	QN
	四氟化碳	hg/L	1.5	ON	QN
10	**	µg/L	1.4	ND	QN
	1,2-二氟乙烷	µg/L	1.4	ND	QN
12	三氟乙烯	µg/L	1,2	MD	CIN
13	1,2-二氟丙烷	hg/L	1.2	ND	QN

第3页共16页

(2024)新锐(祭)字第(01609)号

江苏新锐环境监测有限公司 畔 ポ 豪 極

检测类别: 水质

样品编号 库号 松測项目 14 中来日期日本日報日報日報日報日報日報日報日報日報日報日報日報日報日報日報日報日報日報	45 25 118/L 118/L 118/L 118/L 118/L			
***			202401609W1-1-1	202401609W2-1-1
*			微黄、无异味、无浮油	徽黄、无异味、无浮油
*9		3	2024.1.26	2024.1.26
		松出限	極	检测结果
		1.4	ND	QN
		1.5	ND	ND
		1.2	ND	QN.
		1.0	QN	ND
18 1,1,1,2-四氯乙烷	.乙烷 µg/L	1.5	NO ON	ND
42 61	µg/L	8.0	ND	QN
20 加水二甲苯	a来 µg/L	2.2	QN	QN
本山二一第	‡ μg/L	1.4	ND	QN
22 株乙烯	μg/L	9.0	ND	QN
23 1,1,2,2-四氯乙烷	T/gm	1.1	ON	QN
24 1,2,3-三氟丙烷	丙烷 µg/L	1.2	ND	QN
25 1,4-二氟苯	本 µg/L	8.0	ND	QN
26 1,2-二氮苯	¥ μg/L	8.0	ON	QN
27	T/8n	1.0	QN.	ND

第4页共16页

(2024)新锐(徐)字簿(01609)号

江苏新锐环境监测有限公司检测结果

检测类别: 水质

র জ	位配代别:	小灰				任务编号: 202401609
		采样地 点			W1	W2
		样品编号			202401609W1-1-1	202401609W2-1-1
1 19		样品状态		900	读黄、无异味、无浮油	微黄、无异味、无溶油
		采样日期			2024.1.26	2024.1.26
序号		检测项目	单位	松出限	检测结果	岩果
1		苯胺	mg/L	0.005	QN	CN.
2	SVOCs	2-氟苯酚	mg/L	0.005	GN	QN
m	N	衛基本	mg/L	0.005	R	ex.
1	1 1 1	44.45				

备注:ND表示未检出。

以下空白

第5页共16页

江苏新锐环境监测有限公司检测 结 果

通
大局
类别
遂
趣

						1001017 : COT101007
		来样地点			W1	WZ
		样品编号			202401609W1-1-1	202401609W2-1-1
		样品状态			微黄、无异味、无浮油	(微黄、无异味、无溶油
		采样日期			2024.1.26	2024136
平号		检测项目	单位	数田級		松訓结果
		苯并(a) 蒽	1/8#	0.012	ND	GN.
	17	脚	hg/L	0.005	ND	E S
	1	苯并(b)	Hg/L	0.004	ND	2 5
411	多种方	苯并(k)荧蘑	µg/L	0.004	QN.	S. S.
	ŧ	苯并(a)芘	T/an	0.004	ND	2
	1-9	二苯并(a,h)蒽	µg/L	0.003	Đ.	S (8
		茚并(1,2,3-cd)芘	µg/L	0.005	QN	

以下空白

第6页共16页

(2024)新锐(線)字簿(01609)号

江苏新锐环境监测有限公司检测 结果

采样地点 样品综态 样品状态 采样深度 (m) 采样照度 (m) 采样日期 AX	2	MEMANIE MAN COUNTY TO	V677 707			11.27 編 7: 7.02401003
样品编号 202401609 光棒環境 (m) 米棒環境 (m) 強調項目 車位 推出限 機 mg/kg 0.07 7.88 特 mg/kg 0.07 0.14 特 mg/kg 0.5 ND 特 mg/kg 2 26 大分格 mg/kg 0.002 0.082 特 mg/kg 2 42 大小なん 100 200 大小なん 2 42 200 200 200 200 200 200 200 0.082		采样	地点		T51	T52
採品状态 無色状态 無色状态 無色状态 無色状态 (2024.1.26 機構 中心 (2) 大分名 大分名 大分名 大分名 加度/kg 0.05 ND 大分名 加度/kg 0.05 ND 大分名 加度/kg 0.05 ND 大分名 加度/kg 0.05 30.1 大分名 加度/kg 2 42		田井	编号		202401609 T51-1-1	202401609 T52-1-1
采样環度 (m) 采样日期 本住的 本住的 本院 0.02 大院 0.04 時間 mg/kg 0.07 0.14 有別 mg/kg 0.5 ND 有別 mg/kg 0.5 30.1 本別 mg/kg 2 26 本別 mg/kg 2 442 本別 mg/kg 2 42	3	特品	状态		黑色、有异味、底泥	黑色、有异味、底泥
A A H B H B M B M B M B M B M B M B M B M B		采样琛息	美 (m)		木底 0-0.2	水底 0-0.2
位週項目 単位 提出限 7.88 第 mg/kg 0.07 0.14 六价格 mg/kg 0.5 ND 特 mg/kg 0.5 30.1 特 mg/kg 2 26 大地区 (0.0) 42 20.0 大地区 (0.0) 20.0 20.0 20.0 大地区 (0.0) 20.0 20.0 20.0 20.0 大地区 (0.0) 20.0 20.0 20.0 20.0 20.0 大地区		米株	日期		2024.1.26	2024.1.26
中 mg/kg 0.01	序号	检测项目	单位	松出職	400	站果
編 mg/kg 0.07	-	焦	mg/kg	0.01	7.88	7.45
六价格 mg/kg 0.5 網 mg/kg 2 新 mg/kg 0.002 元本及(スペン) カー	2	響	mg/kg	20:0	0.14	0.10
編 mg/kg 0.5	6	六价格	mg/kg	0.5	ON	QN
始 mg/kg 2 末 mg/kg 0.002 株 mg/kg 2 元本及くのよう。 ************************************	4	事	mg/kg	0.5	30.1	23.8
示 mg/kg 0.002 (4 mg/kg 2	٠,	報	mg/kg	2	26	23
保 mg/kg 2	9	来	mg/kg	0.002	0.082	0.296
7 1911 (7 7) 以表示	۲	鎌	mg/kg	2	42	33
ロ語が Circle/ mg/g 0	00	石油烃 (Clo-C40)	mg/kg	9	202	818
9 苯胺 mg/kg 0.13 ND	6	林胶	mg/kg	0.13	ON	ND

备注:ND表示未检出。

以下空白

第7页共16页

江苏新锐环境监测有限公司

检测结果

_
*
温
泛
75
_
匿
世
1
14
兩
**
±10
蒸
型

					100101202 . F W. C.
	米样地点			T51	T52
	样品编号			202401609 T51-1-1	202401609 T52-1-1
	样品状态			黑色、有异味、底泥	黑色、有异味、底泥
	采样深度 (m)	-	S CALL	水底 0-0.2	水底 0-0.2
	米样日期			2024.1.26	2024.1.26
产中	检测项目	单位	格出題	检测结果	结果
	氟甲烷	µg/kg	1.0	ON	QN
7	難乙落	µg/kg	1.0	QN	QN
60	1,1-二氯乙烯	µg/kg	1.0	CN	QN
4	二氟甲烷	ह्य/हत	1.5	ND	QN
8	反式-1,2-二氯乙烯	hg/kg	1.4	ND	QN
9	1,1-二氯乙烷	µg/kg	1.2	ND	QN
7 VOCs	8 顺式-1,2-二氟乙烯	µg/kg	1.3	CN	QN.
80	製仿	µg/kg	1.1	ND	Ð
6	1,1,1-三氟乙烷	µg/kg	1.3	QN	QN ON
10	回餐名操	µg/kg	1.3	QN	QN
=	₩	µg/kg	6.1	ND	QN
12	1,2-二氟乙烷	рд/кд	1.3	ND	GN
13	三氟乙烯	hg/kg	1.2	ND ON	GN

t注:ND表示未检出。

以下空白

第8页共16页

(2024)新锐(線)字第(01609)号

检测类别: 底质(沉积物)

江苏新锐环境监测有限公司

任务编号; 202401609

站 無 检测

第9页共16页

(2024)新锐(综)字第(01609)号

江苏新锐环境监测有限公司

检测结果

	采样地点		1	TSI	T\$2
	样品编号			202401609 T51-1-1	202401609 TS2-1-1
	样品状态			黑色、有异味、底泥	黑色、有异味、底泥
	采样深度 (m)	200	5 54 5	水底 0-0.2	大庫 0.03
	采样日期			2024.1.26	2024 1 26
	检测项目	单位	松田		检测结果
	2-氯苯酚	mg/kg	90.0	ND	CN
	硝基苯	mg/kg	60'0	ND	Q.
	桊	mg/kg	60.0	QN	E S
	椢	mg/kg	0.1	QN	
evor.	苯并(a)蒽	mg/kg	0.1	QN	
200	苯并(b)荧蒽	mg/kg	0,2	ND	
	苯并(k)	mg/kg	0.1	ND	2
	苯并(a)芘	mg/kg	0.1	QN	CN CN
	二苯并(a,h) 蒽	mg/kg	0.1	ND	S
	南井(1,2,3-cd)芘	mg/kg	0.1	QN	2

以下空白

第10页共16页

附表一: 检测依据一览表

检测类别	项目	检测依据
	pH值	水质 pH 值的测定 电极法 HJ 1147-2020
	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987
	汞、砷	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
	镉、铜、铅、镍	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014
	可萃取性石油烃(C ₁₀ -C ₄₀)	水质 可萃取性石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 H 894-2017
	氯甲烷	水质 氯甲烷测定 气相色谱-质谱法 XR QW154-2020 4/0
地表水	挥发性有机物 (VOCs) (1,1-二氯乙烯、二氯甲烷、反式-1,2-二氯乙烯、1,1-二氯乙烷、顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯乙烷、四氯化碳、苯、1,2-二氯乙烷、甲苯、1,1,2-三氯乙烷、四氯乙烯、氯苯、1,1,1,2-四氯乙烷、乙苯、问,对-二甲苯、邻-二甲苯、苯乙烯、1,1,2-四氯乙烷、1,2,3-三氯丙烷、1,4-二氯苯、氯乙烯、萘)	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012
2 19	半挥发性有机物(SVOCs)(苯胺、 2-氯苯酚、硝基苯)	水质 半挥发性有机物的测定 液液萃取气相色谱/质谱 法 GR QW148-2014 1/0
	多环芳烃 (苯并(b)荧蒽、苯并(a) 芘、苯并(a)蒽、扁、苯并(k)荧蒽、 茚并(1,2,3-cd)芘、二苯并(a,h)蒽)	水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法 HJ 478-2009

续附表一: 检测依据一览表

	表刊(AC)	1位例代据 见衣
检测类别	项目	检测依据
	砷、汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原 子荧光法 HJ 680-2013
	镉、铜、铅、镍	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016
	六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019
	石油烃 (C _{ID} -C ₄₀)	土壤和沉积物 石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 H 1021-2019
	苯胺	土壤和沉积物 苯胺的测定 气相色谱-质谱法 XR QW329-2018 4/0
底质 (挥发性有机物(VOCs)(1,1-二 氟乙烯、二氯甲烷、反式-1,2-二 氯乙烯、1,1-二氯乙烷、顺式-1,2- 二氯乙烯、氯仿、1,1,1-三氯乙烷、 四氯化碳、苯、1,2-二氯乙烷、 三氯乙烯、1,2-二氯丙烷、甲苯、 1,1,2-三氯乙烷、四氯乙烯、氯苯、 1,t,1,2-四氯乙烷、乙苯、间,对- 二甲苯、邻-二甲苯、苯乙烯、 1,1,2,2-四氯乙烷、1,2,3-三氯丙 烷、1,4-二氯苯、氯 甲烷、氯乙烯)	土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱- 质谱法 HJ 605-2011
U	半挥发性有机物 (SVOCs) (2- 氯苯酚、硝基苯、萘、苯并 (a) 蒽、菌、苯并 (b) 荧蒽、苯并 (k) 荧蒽、苯并 (a) 芘、茚并 (1,2,3-cd) 芘、二苯并 (a,h) 蒽)	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017

附表二: 仪器信息一览表

仪器名称	型号	仪器编号	检定有效期
水质多参数仪	SX836	JCSB-C-074-26	2024.07.05
原子荧光光度计	AFS-9700	JCSB-C-002-2	2024.11.26
原子荧光光度计	AFS-8520	JCSB-C-002-3	2024.11.26
分光光度计	Agilent Cary 60	JCSB-C-005-2	2024,05,29
电感耦合等离子体质谱仪	ICAPRQ	JCSB-C-076-1	2024.03.29
气相色谱仪	Trace 1300	JCSB-C-032-5	2025.08.08
气相色谱-质谱联用仪	7890B-5977A	JCSB-C-040	2025.11.26
气相色谱-质谱联用仪	8860-5977B	JCSB-C-040-12	2025.03.29
液相色谱仪	1260	JCSB-C-052	2025.08.13
原子吸收分光光度计	TAS-990F	JCSB-C-001-4	2024.07.10

附表三: 检测分析质量统计表

PHI 値 報告 合格 全格 企品 企品 <th< th=""><th>核變米</th><th>4 中国国</th><th>华基</th><th></th><th>屋屋</th><th>现场平行样</th><th></th><th>3</th><th>探路中</th><th>車平行</th><th></th><th></th><th>加朴</th><th>加标回收</th><th></th><th>全程序空白</th><th>A A A A A</th><th>쏖</th><th>密码样</th><th>标样</th><th>壮</th><th>20</th><th>海</th><th></th></th<>	核變米	4 中国国	华 基		屋屋	现场平行样		3	探路中	車平行			加朴	加标回收		全程序空白	A A A A A	쏖	密码样	标样	壮	20	海	
pH信 2 1 50.0 1 1 7 </th <th>乘</th> <th></th> <th>*</th> <th>*</th> <th>位金</th> <th>40 ±44</th> <th>44 条</th> <th>梅蓉</th> <th>を存る。</th> <th>\$ 数</th> <th>合率格%</th> <th>检数</th> <th>極 %</th> <th>44 数</th> <th></th> <th>检数</th> <th>er 格</th> <th>检验</th> <th>合格数</th> <th>拉勒</th> <th>T -</th> <th>心宣傳數</th> <th>百%</th> <th>ů 椿 ū 鞍</th>	乘		*	*	位金	40 ±44	44 条	梅蓉	を存る。	\$ 数	合率格%	检数	極 %	44 数		检数	er 格	检验	合格数	拉勒	T -	心宣傳數	百%	ů 椿 ū 鞍
特別	表		2	-	50.0	1	100	,	1	1	1	1	1	-	-	1	1	-	-	-	-	-	50.0	-
横 2 1 50.0 1 100 1 50.0 1 100 1 7 1 100 2 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1	米力		2	-	50.0	1	100	-	50.0	1	100	-	50.0	-	100	-	-	-	1	-	-	w	250	1
(4) (4) (4) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	表		7	-	50.0	-	100	-	50.0	1	100	7	100	2	100	-	1	1	-	-	-	9	300	0
特 2 1 50.0 1 100 1 50.0 1 100 2 100 2 100 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	松		7	1	50.0		100	1	,	-	1	-	1	,	-	-	-	1	-	-	1	2	100	N
# 2 1 50.0 1 100 1 50.0 1 100 2 100 2 10 10 1 1 10 1 1 1 1 1 1	表本		2	-	50.0	-	100	-	50.0	-	100	2	100	4	8	-	-	1	-	-	-	4	8	1 4
未 2 1 50.0 1 30.0 1 100 1 100 1 100 1 100 1 100 1	被水		7	-	50.0	-	100	-	50.0	-	901	71	100	2	8	-		-	1	-	-	9	300	2
様 2 1 50.0 1 100 1 100 2 100 2 100 1 <	根		2	-	50.0	-	100	-	50.0	-	8	1	50.0	-	801	-	-	-	-	-	-	v	26	
2 7 7 7 7 7 7 7 7 7 7 7 1 50.0 1 100 1 100 1 50.0 1 100 2 100 2 100 2 100 2 100 2 1 7 7 1 1 7 350 2 1 50.0 1 100 2 100 2 2 7 7 1 1 7 350 2 1 50.0 1 100 2 100 2 100 2 7 7 1 1 7 350 2 1 50.0 1 100 1 50.0 1 100 1 1 7 7 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	表		7	-	50.0	-	100	-	50.0	-	100	2	100	2	8	-	-	,	-	1		. 4	300	1 4
軟件 2 1 50.0 1 100 2 100 2 100 2 100 2 100 2 100 2 100 1 100 1 100 1 100 2 100 2 100 2 100 2 100 2 1	表		-	1	1	1	1	-	'	1	,	-	50.0	-	100	-	-	-	,	-	-	· m	150	0 00
VOCs 2 1 50.0 1 100 1 100 2 100 2 100 2 100 2 1	米		2	1	50.0	1	100	1	50.0	1	100	7	100	64	100	2	2	-	1	-	-	-	350	-
SVOCs 2 1 50.0 1 100 1 100 1 50.0 1 100 1 100 1 100 1	表		2	-	50.0	1	100	1	50.0	-	100	7	100	2	100	2	2	-	-	-	-	-	350	1
多环芳烃 2 1 50.0 1 100 / / / / / 1 100 1 1 / / / 1 1 50.0 1 100 1 1 / / 1 1 4 200	*		7	-	50.0	1	100	1	50.0	-	100	-	50.0	-	100	-	-	-	1	-	-	S	250	vs
	表		7	-	50.0	-	100	1	1	_	1	1	50.0	-	100	-	-	-	1	-	-	4	200	4

第14页共16页

(2024)新戦(線)字第(01609)号

续附表三: 检测分析质量统计表

The state of		4年		思地	现场平行样			实验室	制化活			甘泉	哲称回收		全程	全程序空白	帝四年	推	标样	世	2	領	4	40
敬禮类湖	分析項目	2. 数	強数	後率	华 数	令 格 %	检索	被棄	4 数	合業格の	检索	後季	44 数	各级格别	梅敷	布格	複	42 数	被整	40 数	を直破数	查點	6 結 L 製	格學
底质 (沉积 物)	毒	4	-	50.0	-	100	-	50.0	-	100	-	1	-	,	-	-	,	-	-	_	~	130	m	8
底质(汽积物)	離	2	-	\$0.0	-	001	-	20.0	+1	001	-	50.0	-	100	,	-	-	,	-	1	4	200	4	100
底质 (汽积 物)	六价格	7	1	50.0	1	100	-	20.0	1	100	-	50.0	-	001	1	1	1	~	-	-	4	200	4	8
底质(抗积物)	#	2	-	50.0	1	100	1	\$0.0	-	100	1	20.0		100	1	1	-	,	-	-	4	200	4	8
底质 (汽粮 物)	靈	2	-	50.0	1	001	-	\$0.0	-	93	-	90.0	-	100	1	,	-	1	1	-	4	200	4	8
底质 (汽税 物)	#	2	- 1	50.0	1	100	-	20.0	-	100	1	1	1	1	1	1	1	-	-	-	m	150	w	8
概暦 (汽牧 物)	쬻	2		50.0	1	100	1	50.0	-	100	-	50.0	-	100	1	1	-	-	-	-	4	200	4	90
成质(沉积 物)	石油格 (Cu-Ca)	2	1	1	1	1	1	1	1	,	2	100	2	100	1	,	1	1	-	1	4	150	en.	100
底质 (汽表 物)	報	2	-	50.0	1	100	1	50.0	1	100	1	50.0	-	100	1	,	1	1	-	-	4	200	4	100
底质 (汽积 物)	VOCs	2	-	50.0	1	100		50.0	1	100	2	100	2	100	7	2	1	1	1	-	7	350	7	100
底质 (沉积 物)	svocs	2	-	50.0	-	100	7	20.0	2	100		50.0	-	8	1	-	,	,	-	-	4	200	ত	001
										좌	以下空台													

第15页共16页

附图1测点示意图

******报告给束*****

第16页共16页

(2024)新锐(條)字第(01609)号

检测报告

(2024) 新锐 (综) 字第 (01609-1) 号

项目名称 ___ 江阴市徐霞客镇黄泥头路东、湖庄村路南地块

委托单位 江阴市环保集团有限公司

が、一般を

江苏新锐环境监测有限公司 二〇二四年二月

检测报告说明

一、本报告无批准人签名,或涂改,或未加盖公司检验检测报告专用章和骑缝章均无效。

二、对委托单位自行采集的样品,其分析结果仅对来样负责。无法复现的样品,不受理申诉。

三、对本报告检测结果如有异议者,请于收到报告之日起十天内向 本公司提出书面申诉,超过申诉期限,概不受理。

四、非经本公司同意,不得以任何方式复制本报告。经同意复制的 复印件,应有我公司加盖检验检测专用章予以确认。

五、我公司对本报告的检测数据保守秘密,存档报告保存期限为6年。

地址: 江苏省张家港经济开发区杨舍镇新泾西路 2号

邮编: 215600

电话: 0512-35001025

传真: 0512-35022259

江苏新锐环境监测有限公司 检 测 报 告

	155 174	77	
委托单位	江阴市环保集团有限公司	地址	江阴市香山路158号
项目名称	江阴市徐霞客镇黄泥头路东、湖庄村 路南地块	项目地址	江阴市
联系人	戚彦妮	电话	13906162573
现场检测人员	朱军、施春凯	现场检测日期	2024年1月26日
实验室分析人员	孙丹微	实验室分析日期	2024年1月31日
检测内容	底质(沉积物): pH值		
检测依据	见附表一		
检测仪器	见附表二		. 7
质量统计表	见附表三		
测点示意图	见附图 1		
结论	检测结果见第2页。	17019 700	

申核: 礼長

签发: TRATA

签发日期:25八年 2月5日

江苏新锐环境监测有限公司 检 测 结 果

-
100
嵌
以
*
\sim
馬
松
1
函
米
壓
包
100

来样地点	电流		TSI	T52
样品编号	宇		202401609 T51-1-1	202401609 T52-1-1
样品状态	状砂	M. September 1	黑色、有异味、底泥	黑色、有异味、底泥
采样深度 (m)	£ (m)		木底 0-0.2	水底 0-0.2
采样日期	日期		2024.1.26	2024.1.26
检测项目	单位	路田魯	· · · · · · · · · · · · · · · · · · ·	检测结果
pH值	无重纲	1	7.78	7.59

以下空白

第2页共5页

附表一: 检测依据一览表

检测类别	项目	检测依据
底质(沉积 物)	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018
1		以下空白

附表二: 仪器信息一览表

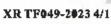
		E-+	201-	
仪器名和		型号	仪器编号	检定有效期
pH it		FE28	JCSB-C-011-2	2024.05.29

(2024)新裝(線)字簿(01609-1)号

										-									
12 TAN 12	现场平行样	泄		水器	華平行			加标	回收		全程序空	- III	医码样	标样	世	5			40
金融尖刻 方が以目 杆品 检查 检查数 数 率%	章 给数	を を を を を を る る る る る る る る る る る る る る	检查	检查率%	命格	4年 88 88 88 88 88 88 88 88 88 88 88 88 88	極機	检查率%	40 80 80 80 80 80 80 80 80 80 80 80 80 80	40 景	检查 合格	格检查	5 合格	位を	44	は一位を対して、	Litra %	心格	佐報
			t						*	1	-	+	+	×	×				
PH (2 1 50.0	0	001	+	50.0	-	100	1	1	1	1	1	-	1	-	1	60	8	er	1

总令	佐州 %	95		
	心核口数	6		
如	查验 %	150		
	は数は	m		
100	40条	á -		
标样	梅	-		
世	2000年	* -		
化码样	检查器			
公田	40 条	-		
全程序空白	松香			
	哈格 温%			
X	合格 数 4	-		
加标回收				
#	整香率%	,		
S.	检检数	`	Ⅲ 9H 2G	
	中格 %%	100		
年行	4 整数	-		
实验室平行	松香率%	50.0		
	检查数数			
	一部 を	901		
#	40 42 48 48 48			
吐		1 0		
	E 检查率	50.0		170
	極數	-		
40年	£ \$\$	2		
公布市四	T KIAN	pH (
10.4		(犯税		

第4页共5页



护

备注: ■T51-T52 为底质 (沉积物) 测点位置。

检测报告

(2024) 新锐 (综) 字第 (01610) 号

项目名称 江阴市徐霞客镇湖庄村路南、黄家村西侧地块

委托单位 江阴市环保集团有限公司

> 江苏新锐环境监测有限公司 二〇二四年二月

检测报告说明

- 一、检测报告无检验检测专用章、骑缝章、签发人签字无效。
- 二、本报告只对本次采样/样品检测项目结果负责,不对送样样品来源负责,报告中如由客户提供的限值、参考标准等仅供参考。
- 三、未经本公司书面批准,不得涂改、增删、部分复制(全文复制除外)检测报告,不得用于商品广告。

四、对本报告有疑议,请在收到报告10个工作日内与本公司联系,逾 期不予受理,无法保存、复现的样品不予受理。

江苏新锐环境监测有限公司

联系地址:江苏省张家港经济开发区杨會镇新泾西路2号

邮政编码: 215600

联系电话: 051/2-35022007

企业邮箱: jiangsuxinrui@163. com

江苏新锐环境监测有限公司

检测报告

委托单位	江阴市环保集团有限公司	地址	江阴市香山路158号
项目名称	江阴市徐霞客镇湖庄村路南、黄家村 西侧地块	项目地址	红阴市
联系人	威彦妮	电话	13906162573
现场检测人员	朱军、施春凯	现场检测日期	2024年1月26日
实验室分析人员	顾嘉辉、汤妃平等	实验室分析日期	2024年1月27日-2月1日
检测内容	烷、挥发性有机物(VOCs)(1,1-二: 顺式-1,2-二氯乙烯、氯仿、1,1,1-三氯 二氯丙烷、甲苯、1,1,2-三氯乙烷、四 邻-二甲苯、苯乙烯、1,1,2,2-四氯乙烷 萘)、半挥发性有机物(SVOCs)(5 苯并(k)荧蒽、茚并(1,2,3-cd)芘、二苯 底质(沉积物):砷、镉、六价。 性有机物(VOCs)(1,1-二氯乙烯、 乙烯、氯仿、1,1,1-三氯乙烷、四氯化。 1,1,2-三氯乙烷、四氯乙烷、氯苯、1, 烯、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷 性有机物(SVOCs)(2-氯苯酚、硝基 荧蒽、苯并(a)芘、茚并(1,2,3-cd)	(乙烷、四氯化碳、表氯乙烯、氯乙烯、氯苯、1,1,1%、1,2,3-三氯丙烷、苯胺、2-氯苯酚、硝酸并(a,h)蒽、苯并(b)炭路、铜、铅、汞、镍二氯甲烷、反-1,2-二氯乙烷、苯、1,2-二氯乙烷、乙丸、1,4-二氯苯、1,2-二氢苯、萘、苯并(a)	本、1,2-二氯乙烷、三氯乙烯、1,2 ,2-四氯乙烷、乙苯、间,对-二甲苯、 1,4-二氯苯、1,2-二氯苯、氯乙烯、 医苯)、多环芳烃(苯并(a)蒽、菌 德、苯并(a)芘) 、石油烃(C10-C40)、苯胺、挥发 氯乙烯、1,1-二氯乙烷、顺-1,2-二氯 完、三氯乙烯、1,2-二氯丙烷、甲苯 长、间,对-二甲苯、邻-二甲苯、苯乙 氯苯、氯甲烷、氯乙烯)、半挥发 蒽、萜、苯并(b) 荧蒽、苯并(k
检测依据	见附表—		
检测仪器	见附表二		
质量统计表	见附表三		
测点示意图	见附图 1	S DAME	
结论	检测结果见第 2-10 页。		

编制:了五人

审核: 如臭

签发:

检验检测专用或验检测专用草

签发日期之524年 2月6日

江苏新锐环境监测有限公司

眠 检 澂 结

極巡 火逝:	日本小			*****	W2
	采样地点			W	
	样品编电			202401610W1-1-1	202401610W2-1-1
	样品状态			微黄、无异味、无择油	徽黄、无异味、无浮油
	采样日期			2024.1.26	2024.1.26
	回營票架	单位	检出限	检测结果	mi v
-	NH C	无量夠	1	8.4	8.4
	4	T/sm	0.0003	0.0004	0.0004
_	回至	mg/L	0.00005	ND	ON
-	数余米	me/L	0.004	ND	ON.
-		mø/L	0.00008	0.00049	0.00056
-	£ \$	mø/L	0.00009	9.00014	ON
-	111	mg/L	0.00004	QN	ON
-	* *	me/L	0.00006	0.00066	0.00063
-	可被取存石油格(Cio-Cao)	mg/L	0.01	0.04	0.04
-	東田県	T.om	6,000	ND	QN

备注: 1、ND表示未检出;

2、pH值检测时,202401610W1-1-1样品水温为7.6°C,202401610W2-1-1样品水温为7.5°C。 以下空白

第2页共16页

(2024)新锐(练)字第(01610)号

江苏新锐环境监测有限公司检测 结果

	采样地点			W1	W2
	样品编号			202401610W1-1-1	202401610W2-1-1
	样品状态	7	1	微黄、无异味、无溶油	微黄、无异味、无浮油
	采样日期		50	2024.1.26	2024.1.26
序号	检测项目	单位	松出限	检	检测结果
	第2条	Hg/L	1.5	ND	Q.
2	1,1-二氟乙烯	1/8rt	1.2	ΩN	QN.
3	二氟甲烷	J/8rt	1.0	ND	QN
4	反式-1,2-二氟乙烯	Hg/L	1.1	ND	ON
2	1,1-二氟乙烷	µg/L	1.2	QN	ON.
9	顺式-1,2-二氯乙烯	T/Brl	1.2	ND	ND
7 VOCs	無仿	T/an	4.1	ON	QN
00	1,1,1-三氟乙烷	1/8H	4.1	ND	CN
6	四氟化碳	T/8rl	1.5	ND	CIN
101	**	T/8rt	1.4	QN	Ð.
	1,2-二氟乙烷	hg/L	1.4	ND	QN
12	三氟乙烯	J'gu	1.2	ND	QN
13	12.一篇历经	up/L	1.2	QN	Q.

备任: ND表示未極出。

第3页共16页

(2024)新锐(综)字第(01610)号

江苏新锐环境监测有限公司检测 结果

+
7
3
<u>1</u>
7
木质
检测类别:
*

					-	CAR.
					10	7.M
	Ti.	样品编号	\$		202401610W1-1-1	202401610W2-1-1
	-	样品状态			微黄、无异味、无浮油	徽黄、无异味、无浮油
-		采样日期			2024.1.26	2024.1.26
平		检测项目	单位	松出限		检测结果
14		中本	µg/L	1.4	ND	ON.
15		1,1,2-三氟乙烷	µg/L	1.5	QN	QN.
16		百難乙都	µg/L	1.2	QN.	Q.
17		製料	πg/L	1.0	QN.	62
8		1,1,1,2-四氟乙烷	µg/L	1.5	QN.	8
19		業 2	μg/L	8.0	£	GN C
20	W.C.	一种"二一种"	Hg/L	2.2	92	CN CN
21	3	4-二甲苯	µg/L	1.4	QN	Q.
22		茶乙烯	µg/L	9.0	Q	QN.
23		1,12,2-四氟乙烷	ng/L	1.1	Ð	QN.
24		1,2,3三氯丙烷	µg/L	1.2	QV.	QV
25		1,4二氯苯	µg/L	0.8	Ð.	QX
56		1,2-二氟苯	µg/L	8.0	QN	QN
27		秦	µg/L	1.0	ON	Q

第4页共16页

(2024)新锐(線)字第(01610)号

江苏新锐环境监测有限公司 检测结果

		采样地点			WI	W2
		样品编号			202401610W1-1-1	202401610W2-1-1
		样品状态			微黄、无异味、无浮油	徽黄、无异味、无择油
		采样日期			2024.1.26	2024.1.26
田台		检测项目	单位	松出限	检测结果	结果
-		苯胺	mg/L	0.005	QN	ON
7	SVOCs	2-氟苯酚	mg/L	9000	ND	ND ON
6		硝基苯	mg/L	0.005	ON	QN

备注:ND表示未检出。

江苏新锐环境监测有限公司 检测结果

检测类别: 水质

11.分编号: 202401610	W2	-1 202401610W2-1-1	数	2024.1.26	检测结果	QN	QN	QX	9	Q.	QN .	
	W1	202401610W1-1-1	徽黄、无异味、无浮油	2024.1.26		QN	QN	QN	QN	QN	QN	
-					松出限	0.012	0.005	0.004	0.004	0.004	0.003	
					单位	ηg/L	ηg/L	hg/L	μg/L	µg/L	hg/L	
	采样地点	样品编号	样品状态	采样日期	检测项目	苯并(a)蒽	亜	苯并(b)	苯并(k) 茨蔥	苯并(a)芘	二苯并(a,b)蒽	# 12
							1	#	多本方	į	10	
		17			序号	1	2	Ę.	4	5	9	

以下空白

第6页共16页

(2024)新锐(绕)字第(01610)号

江苏新锐环境监测有限公司 畔 ポ 孠 엗

检测类别, 威质 (汽积物)

任务编号: 202401610 黑色、有异味、底泥 202401610T38-1-1 **木底 0-0.2** 2024.1.26 0.12 T38 5.57 2 检测结果 黑色、有异味、底泥 202401610T37-1-1 木成 0-0.2 2024.1.26 91.0 T37 8.18 2 松出限 0.07 0.01 0.5 mg/kg mg/kg mg/kg 单位 呆样深度(田) 采样日期 样品编号 来样地点 样品状态 检测项目 六价格 熚 噩 医导 m

备注: ND表示未检出。

以下空白

0.088

0.084

0.002

mg/kg mg/kg

汞 镍

9

318

34

2

0.13

mg/kg

9

mg/kg

石油松 (CIP-C40)

29.0

0.5 Ø

mg/kg mg/kg

쿞

24

9

789 £

8

23.0

(2024)新锐(缘)字第(01610)号

江苏新锐环境监测有限公司 检测结果

检调类别: 底质(沉积物)

Barrell		米林地点			T27	019104707:5 聚化出
样品報号 2024016/10737-1-1 群品状态 無色、有异味、底泥 采样日期 本位 检出版 氣甲烷 山阜/kg 1.0 ND 1,1-二氯乙烯 山阜/kg 1.0 ND 成式-1,2-二氯乙烯 山阜/kg 1.4 ND 1,1-二氯乙烷 山阜/kg 1.3 ND 成式-1,2-二氯乙烷 山阜/kg 1.3 ND 原式-1,2-二氯乙烷 山阜/kg 1.3 ND 町塩/kg 1.3 ND 町塩/kg 1.3 ND 町塩/kg 1.3 ND 1,1,1-三氯乙烷 山阜/kg 1.3 ND 町塩/kg 1.3 ND 1,2-二氯乙烷 山阜/kg 1.3 ND 1,2-二氯乙烷 山阜/kg 1.3 ND 1,2-二氯乙烷 山阜/kg 1.3 ND 1,2-二氯乙烷 山阜/kg 1.3 ND 1,2-二氯乙烯 山阜/kg 1.3 ND		WOOD II SH			12/	138
样品状态 黑色、有异味、底泥 黑色、有异味、底泥 来样日期 木底 0-0.2 来样日期 全週項目 单位 检出限 MD 類目標 山野/路 1.0 ND 東京/森 山野/路 1.0 ND 1,1-二氟乙烯 山野/路 1.2 ND 成式-1,2-二氟乙烯 山野/路 1.3 ND 麻式-1,2-二氟乙烯 山野/路 1.3 ND 東京/路 山野/路 1.3 ND 町工業乙烯 山野/路 1.1 ND 東京/路 山野/路 1.3 ND 町工業乙烷 山野/路 1.3 ND 町工業乙烷 山野/路 1.3 ND 東京/市 山野/路 1.3 ND 1,1.1-三氟乙烷 山野/路 1.3 ND 1,2-二氟乙烷 山野/路 1.3 ND 二二氟乙烯 山野/路 1.3 ND 二二二氟乙烯 山野/路 1.3 ND 二二二氟乙烯 1.3 ND 二二十二二氟乙烯 1.3 ND 二二十二二氟乙烯 1.3 <		样品编号			202401610T37-1-1	202401610T38-1-1
采样日期 本柱日期 本柱日期 複響項目 単位 柱形線 2024.1.26 複響項目 単位 柱形線 MD 類と端 1.0 ND MD 1,1-二氟乙烯 1/4 ND MD 成式-1,2-二氟乙烯 1/4 ND MD 成式-1,2-二氟乙烯 1/4 ND MD 成式-1,2-二氟乙烷 1/4 ND MD 東京/院 1/4 ND MD 東京/院 1/3 ND MD 1/1-三氟乙烷 1/4 ND MD 東京/成 1/4 ND ND 1/1-三氟乙烷 1/4 ND ND 1/3-二氟乙烷 1/4 ND ND 三氟乙烯	-	样品状态			黑色、有异味、底泥	黑色、有异味、底泥
		采样深度 (m)			水底 0-0.2	水底 0-0.2
 金融通角目 単位 检出版 無日流 μg/kg 1.0 1.1.二氟乙烯 μg/kg 1.5 反式・1.2二氟乙烯 μg/kg 1.5 (反式・1.2二氟乙烯 μg/kg 1.5 (反式・1.2二氟乙烯 μg/kg 1.2 (反式・1.2二氟乙烯 μg/kg 1.3 (取) (取)		采样日期			2024.1.26	2024.1.26
 観甲烷 μg/kg 1.0 1,1-二氟乙烯 μg/kg 1.0 二氟甲烷 μg/kg 1.5 反式-1,2-二氟乙烯 μg/kg 1.5 板式-1,2-二氟乙烯 μg/kg 1.2 横式-1,2-二氟乙烯 μg/kg 1.3 東佐 μg/kg 1.3 東原kg 1.3 東 μg/kg 1.3 		检测项目	单位	数出额	检测	结果
 (A		實甲格	µg/kg	1.0	ND	QN.
1,1-二氟乙烯 μg/kg 1.0 二氟甲烷 μg/kg 1.5 反式-1,2-二氟乙烯 μg/kg 1.2 耐式-1,2-二氟乙烯 μg/kg 1.3 氟式-1,1-二氟乙烷 μg/kg 1.3 四氧化碳 μg/kg 1.3 苯 μg/kg 1.3 苯 μg/kg 1.9 三氟乙烷 μg/kg 1.9		無乙落	µg/kg	1.0	ND	QN
二氟甲烷 μg/kg 1.5 反式-1,2-二氟乙烯 μg/kg 1.4 1,1-二氟乙烯 μg/kg 1.3 氟式-1,2-二氟乙烯 μg/kg 1.1 氟式-1,1-三氟乙烷 μg/kg 1.3 四氧化碳 μg/kg 1.9 1,2-二氟乙烷 μg/kg 1.9 三氟乙烯 μg/kg 1.9 三氟乙烯 μg/kg 1.3 三氟乙烯 μg/kg 1.3		1,1-二氧乙烯	на/ка	1.0	ND	QN
反式-1,2-二氧乙烯 μg/kg 1.4 1,1-二氧乙烷 μg/kg 1.2 瀬方 μg/kg 1.1 1,1,1-三氟乙烷 μg/kg 1.3 四氧化碳 μg/kg 1.9 1,2-二氟乙烷 μg/kg 1.3 三氟乙烷 μg/kg 1.9 三氟乙烯 μg/kg 1.3 三氟乙烯 μg/kg 1.3		二類甲箔	µg/kg	1.5	ND ON	ND
1,1-二氟乙烷 ng/kg 1.2 颜式-1,2-二氟乙烯 ng/kg 1.3 氧仿 ng/kg 1.1 1,1,1-三氟乙烷 ng/kg 1.3 四氧化碳 ng/kg 1.9 1,2-二氟乙烷 ng/kg 1.3 三氟乙烯 ng/kg 1.3 三氟乙烯 ng/kg 1.3		反式-1,2-二氧乙烯	µg/kg	1.4	ND	QN
 無式-1,2-二氟乙烯 μg/kg 1.3 其仿 μg/kg 1.1 1,1,1=三氟乙烷 μg/kg 1.3 四氧化碳 μg/kg 1.3 末 μg/kg 1.9 1,2-二氟乙烷 μg/kg 1.3 三氟乙烷 μg/kg 1.9 三氟乙烯 μg/kg 1.3 		1,1-二氟乙烷	µg/kg	1.2	ND	QN
нg/kg 1.1 нg/kg 1.3 нg/kg 1.9 нg/kg 1.9 нg/kg 1.3 нg/kg 1.9	VOCs		ря/ви	1.3	QN	QN
нg/kg 1.3 нg/kg 1.9 нg/kg 1.9		氣仿	µg/kg	1.1	QN	CIN
µg/kg 1.3 µg/kg 1.9 µg/kg 1.3		1,1,1-三氟乙烷	µg/kg	13	ND	QN
μg/kg 1.9 μg/kg 1.3		回難名康	нв/кв	1.3	ND	QN
μg/kg 1.3		₩	µg/kg	1.9	ND	CN
110/kg 1.2		1,2-二氯乙烷	µg/kg	1.3	ND	QN
ii.	i i	三氟乙烯	pg/kg	1.2	QN	QN

备注:ND表示未检出。

以下空白

第8页共16页

(2024)新铣(線)字第(01610)号

江苏新锐环境监测有限公司 畔 北 影 包

麻质 (汽散物) 检测类别:

任务编号: 202401610 黑色、有异味、底泥 202401610T38-1-1 水底 0-0.2 2024.1.26 £ £ g 2 B 2 물 B B £ £ 2 2 £ 检测结果 黑色、有异味、底泥 202401610T37-1-1 以下空白 木底 0-0.2 2024.1.26 2 B 2 B 2 2 R S B 2 T37 2 2 B 松田田 9 1.2 1.2 1.4 2 7 1.2 1.2 1.2 1,2 1. 7 pg/kg ng/kg ga/gr µg/kg µg/kg ug/kg Hg/kg Hg/kg µg/kg µg/kg µg/kg H8/kg Hg/kg Hg/kg 单位 1,1,2,2-四氟乙烷 采样深度 (m) 1,1,1,2-四氯乙烷 12.3-三氟丙烷 1,1,2-三氟乙烷 1,2-二氯丙烷 间,对-二甲苯 采样地点 样品编号 样品状态 采样日期 1,4-二氯苯 1,2-二氨苯 邻-二甲苯 四萬乙基 苯乙烯 館林 公業 本 检测项目 备注:ND表示未检出。 VOCs 26 25 7 15 91 99 13 2 21 22 23 24 23 **性** 中 1

Ħ 16 # 9 国 無

江苏新锐环境监测有限公司

检测结果

检测类别: 底质(沉积物)

					OIDIO: TOTAL COMMENT
	米样地点			T37	T38
	样品编号			202401610T37-1-1	202401610T38-1-1
	样品状态			黑色、有异味、底泥	黑色、有异味、底泥
	采样深度 (m)			水底 0-0.2	水床 0-0.2
1	采样日期			2024.1.26	2024.1.26
序号	检测项目	单位	和國		检测结果
_	2-氟苯酚	mg/k3	90.0	QN	ND
2	硝基苯	mg/kg	60'0	ND	QN
m	**	mg/k3	60.0	ND	QN
4	單	mg/kg	0.1	ND	ND
S SVOCe	来并(a)菌	mg/kg	0.1	ND	GN
9	苯并(b)荧蒽	mg/kg	0.2	QN	GN
7	素并(k)荧蒽	mg/kg	0.1	QN	GN.
œ	苯并(a)芘	mg/kg	0.1	QN	QN
6	二苯并(a,b) 蔥	mg/kg	0.1	ND	QN
10	帮并(1,2,3-cd)按	mg/kg	0.1	Ð	GN

以下空白

第10页共16页

附表一: 检测依据一览表

检测类别	项目	检測依据
	pH 值	水质 pH 值的测定 电极法 HJ 1147-2020
y A	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987
	汞、砷	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
	镉、铜、铅、镍	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014
	可萃取性石油烃(C10-C40)	水质 可萃取性石油烃(C10-C40)的測定 气相色谱法 HJ 894-2017
	氯甲烷	水质 氯甲烷测定 气相色谱-质谱法 XR QW154-2020 4/0
地表水	挥发性有机物(VOCs)(1,1-二氯乙烯、二氯甲烷、反式-1,2-二氯乙烯、1,1-二氯乙烷、顺式-1,2-二氯乙烷、四氯化碳、苯、1,2-二氯乙烷、三氟乙烯、1,2-二氯丙烷、甲苯、1,1,2-三氯乙烷、乙苯、间,对-二甲苯、邻-二甲苯、苯乙烯、1,2,2-四氯乙烷、1,2,3-三氯丙烷、1,4-二氯苯、1,2-二氯苯、氯乙烯、萘)	
	半挥发性有机物(SVOCs)(苯胺、 2-氯苯酚、硝基苯)	水质 半挥发性有机物的测定 液液萃取气相色谱/质谱 法 GR QW148-2014 1/0
	多环芳烃 (苯并(b)荧蒽、苯并(a) 芘、苯并(a)蒽、蒽、苯并(k)荧蒽、 茚并(1,2,3-cd)芘、二苯并(a,h)蒽)	
		151

(2024)新锐(综)字第(01610)号

续附表一, 检测依据一览表

发門 农	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
项目	检测依据
砷、汞	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013
領、銅、鉛、镍	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016
六价铬	土壤和沉积物 六价铬的测定 破溶液提取-火焰原子吸收分光光度法 HJ 1082-2019
石油烃(C ₁₀ -C ₄₀)	土壤和沉积物 石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 H. 1021-2019
苯胺	土壤和沉积物 苯胺的测定 气相色谱-质谱法 XR QW329-2018 4/0
挥发性有机物(VOCs)(1,1-二 氯乙烯、二氯甲烷、反式-1,2-二 氯乙烯、1,1-二氯乙烷、顺式-1,2- 二氯乙烯、氯仿、1,1,1-三氯乙烷、 四氯化碳、苯、1,2-二氯乙烷、 三氯乙烯、1,2-二氯丙烷、甲苯、 1,1,2-三氯乙烷、四氯乙烯、氯苯、 1,1,2-四氯乙烷、乙苯、间,对- 二甲苯、邻-二甲苯、苯乙烯、 1,1,2,2-四氯乙烷、1,2,3-三氯丙 烷、1,4-二氯苯、1,2-二氯苯、氯 甲烷、氯乙烯)	土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱- 质谱法 HJ 605-2011
半挥发性有机物 (SVOCs) (2- 氯苯酚、硝基苯、萘、苯并 (a) 蔥、ជ、苯并 (b) 荧蒽、苯并 (k) 荧蒽、苯并(a) 芘、茚并(1,2,3-cd) 芘、二苯并 (a,h) 蒽)	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱 法 HJ 834-2017
	项目

附表二: 仪器信息一览表

仪器名称	型号	仪器编号	检定有效期
水质多参数仪	SX836	JCSB-C-074-26	2024.07.05
原子荧光光度计	AFS-9700	JCSB-C-002-2	2024.11.26
原子荧光光度计	AFS-8520	JCSB-C-002-3	2024.11.26
分光光度计	Agilent Cary 60	JCSB-C-005-2	2024.05.29
电感耦合等离子体质谱仪	ICAPRQ	JCSB-C-076-1	2024.03.29
气相色谱仪	Trace 1300	JCSB-C-032-5	2025.08.08
气相色谱-质谱联用仪	7890B-5977A	JCSB-C-040	2025.11.26
气相色谱-质谱联用仪	8860-5977B	JCSB-C-040-12	2025.03.29
液相色谱仪	1260	JCSB-C-052	2025.08.13
原子吸收分光光度计	TAS-990F	JCSB-C-001-4	2024.07.10

附表三: 检测分析质量统计表

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	本語	1	現场平行样	4.			来	实验室平行			加构	加标回收		全程序空台	HQ III	後記幕	#1-	标样		100 400		
		極數	をを	40 数	40 条	植教	極 學 %	合数格	◆ ◆ ◆ ◆	松	を を を と と と と と と と と と と と と と と と と と	de 格 ♥	4 4 4 8	李	4 数数	極整	合格数	松 鱼	40 40	11.40	音楽	本
pH值	7	1	50.0	1	100	1	1	/	1	1	1	1	1	-	-	-	-	-	-	1 5	50.0	100
毒	7	1	90.0	-	100	-	50.0	1	100	-	50.0	-	100	-	-	,	~	-	-	5	250	-
響	2	1	50.0	-	100	-	50.0	1	100	2	100	2	100	-	-	-	-	-	-		100	-
六价格	2	-	50.0	-	001	1	1	/	1	1	,	1	1	-	-	1	-	-	-	+	-	-
*	2	1	50.0	1	100		90'0	-	100	2	100	2	100	-	-	-	,	-	-	-	300	-
	2	-	50.0	1	100	-	50.0	-	001	2	100	2	100	-	2	-	1	-	-		300	+
来	7	-	50.0	1	100		50.0	-	901	-	50.0	-	901	-	-	-	-	-	-	-	250	
#	2	-	50.0	-	901		50.0	-	100	7	100	7	8	-	-	-	1	-		-	900	+
可萃取住石油 烃 (Clo-Ceo)	2	,	,	1	1	-	1	1	1	-	50.0	-	001	-	-	-	-	-	_	1 3	150	
類甲烷	7	-	50.0	1	100	1	50.0	1	100	2	100	2	001	2	2	1	1	1	1	-	350	7 100
VOCs	2	1	50.0	1	100	-	50.0	-	100	2	100	7	90	2	и	-	-	1	-	-	350	001 /
SVOCs	2	-	50.0	1	100	-	50.0	1	100	-	50.0	1	100	-	-	_	-	-	_	5	250	5 100
多环芳烃	2	-	50.0	-	100	1	+	1	1	-	50.0	1	100	-	-	-	-	1	-	4	200	100

第14页共16页

(2024)新锐(線)字第(01610)号

续附表三: 检测分析质量统计表

検査 検査 合格 合格 検査 検査 (全権 合格 検査 検査 (全権 合格 検査 合格 検査 合格 検査 合格 検査 合格 検査 (全格 (全権			分析		現場	現场平行样			安雅车	官平行		J	岩板	加桥回收		全程序空白	発白	密码样	牲	体体	*	荷		40 40	40 s
2 1 50.0 1 60.0 1 60.0 1 7	3 F	华	建東	检索	を存る。	中春数	44 %	複数	を登る。	幸 黎	4 8 %	遊敷	後輩	李	各零格%	秦	小	检数	存着	香酸	名数	松	■ %	整	4 8
2 1 500 1 600 1 500 1 100 1 500 1 100 1 100 1 500 1 100 1 100 1 500 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1		惠	7	1	50.0	1	001	1	50.0	1	100	1	1	1	1	1	1	1	-	-	-	6	150	t.V	92
2 1 50.0 1 100 1 50.0 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1		露	7	-	50.0	1	100	I	50.0	1	100	1	50.0	1	100	1	1	1	-	-	-	4	200	4	100
2 1 50.0 1 100 1 50.0 1 100 1 50.0 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 <th< td=""><td>-</td><td>六价格</td><td>7</td><td>1</td><td>50.0</td><td>1</td><td>100</td><td></td><td>50.0</td><td>1</td><td>18</td><td>-</td><td>20.0</td><td>-</td><td>100</td><td>1</td><td>1</td><td>'</td><td>_</td><td>-</td><td>-</td><td>4</td><td>200</td><td>4</td><td>8</td></th<>	-	六价格	7	1	50.0	1	100		50.0	1	18	-	20.0	-	100	1	1	'	_	-	-	4	200	4	8
2 1 50.0 1 100 1 50.0 1 100 1 <th< td=""><td></td><td>垂</td><td>7</td><td>1</td><td>50.0</td><td>1</td><td>100</td><td>1</td><td>\$0.0</td><td>1</td><td>8</td><td>-</td><td>50.0</td><td>-</td><td>100</td><td>1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>4</td><td>200</td><td>4</td><td>99</td></th<>		垂	7	1	50.0	1	100	1	\$0.0	1	8	-	50.0	-	100	1	-	-	-	-	-	4	200	4	99
2 1 56.0 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1	-	湿	2	,	50.0	1	100	-	90.0	-	100	-	50.0	-	100	-	-	-	,	-	-	4	200	4	8
2 1 50.0 1 50.0 1 100 1		总表	2	1	50.0	-	100	-	90.0	1	901	~	1	-	-	-	-	-	-	-	-	6	150	m	8
2 7		懋	2	1	20.0	1	100	1	50.0	-	100	-	20.0	-	100	-	1	-	-	-	-	4	200	4	100
2 1 \$6.0 1 100 1 <td>~ 3</td> <td>石油松 Clo-C₁₀)</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>,</td> <td>-</td> <td>50.0</td> <td>1</td> <td>100</td> <td>73</td> <td>100</td> <td>17</td> <td>100</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>4</td> <td>200</td> <td>4</td> <td>188</td>	~ 3	石油松 Clo-C ₁₀)	2	1	1	1	,	-	50.0	1	100	73	100	17	100	-	1	-	-	-	1	4	200	4	188
2 1 50.0 1 100 1 50.0 1 100 2 100 2 100 2 100 2 100 2 2 0 1 1 1 1		苯胺	2	1	50.0	1	001	1	1	-	-	~	_	-	'	-	-	-	-	-	-	2	100	7	8
2 1 50.0 1 100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		VOCs	73	1	50.0	1	92	-	50.0	-	001	7	100	2	100	2	7	-	-	-	7	-	350	-	90
	9,1	SVOCs	2	1	50.0	-	100	-	,	1	1	1	1	-	1	-	-	1	-	-	-	63	001	7	901

第15页共16页

*******报告结束*****

第16页共16页

检测报告

(2024) 新锐 (综) 字第 (01610-1) 号

项目名称 江阴市徐霞客镇湖庄村路南、黄家村西侧地块

委托单位

江阴市环保集团有限公司

江苏新锐环境监测有限公司 二〇二四年二月

检测报告说明

一、本报告无批准人签名,或涂改,或未加盖公司检验检测报告专用章和骑缝章均无效。

二、对委托单位自行采集的样品,其分析结果仅对来样负责。无法 复现的样品,不受理申诉。

三、对本报告检测结果如有异议者,请于收到报告之日起十天内向本公司提出书面申诉,超过申诉期限,概不受理。

四、非经本公司同意,不得以任何方式复制本报告。经同意复制的 复印件,应有我公司加盖检验检测专用章予以确认。

五、我公司对本报告的检测数据保守秘密,存档报告保存期限为 6 年。

地址: 江苏省张家港经济开发区杨舍镇新泾西路 2号

邮編: 215600

电话: 0512-35001025

传真: 0512-35022259

江苏新锐环境监测有限公司 检 测 报 告

委托单位	红阴市环保集团有限公司	地址	江阴市香山路158号
项目名称	江阴市徐霞客镇湖庄村路南、黄家村 西侧地块	项目地址	江阴市
联系人	戚彦妮	电话	13906162573
现场检测人员	朱军、施春凯	现场检测日期	2024年1月26日
实验室分析人员	孙丹微	实验室分析日期	2024年1月31日
检测内容	底质(沉积物): pH值		
检测依据	见附表一		
检测仪器	见附表二		
质量统计表	见附表三		
测点示意图	见附图 1		
结论	检测结果见第2页。		

编制: 了本房

审核: 如果

签发: 大大大

检验检测专用章

签发日期:上外年上月6日

江苏新锐环境监测有限公司检测结果

T37	米样地点
; A T	
任务	氏百、名を多し

				019104707 : 4 編 4 円
采样地点	他点		T37	T38
样品编号	扇母		202401610T37-1-1	202401610T38-1-1
样品状态	大教		黑色、有异味、底泥	黑色、有异味、底泥
采样深度 (m)	(m)		水底 0-0.2	水原 0-0.2
采样日期	日期		2024.1.26	2024 1 26
序号 检测项目	单位	松田窟		检测结果
pH值	无量纲	1	7.54	010

以下空白

第2页共5页

附表一: 检测依据一览表

检测类别 项目	检测依据			
底质(沉积 物) pH值	土壤 pH 值的测定 电位法 HJ 962-2018			

附表二: 仪器信息一览表

仪器名称	型号	仪器编号	检定有效期
pH it	FE28	JCSB-C-011-2	2024.05.29

(2024)新锐(線)字第(01610-1)号

1 1 2 100 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	现场平行样实验室平行	平行样		实验室平行	室平 行	午			3	12	教		49-		密码样	*	标样	100	1	40	700
7. 下空白 A.下空白	以下空白		合格 合格 松香 松香 松香 数 多% 数 多%	を存るを存る。	変え		40 数	pėti .	存 %	松香	_	中华	合格 图 8%	14.4				-	_	章 章	特	格譽%
		pH值 2 1 56.0 1 100 / / /	1 1000 1	1 1	,		~		1	1	-	-						-	7	95	2	100
							100		LW.	2空自					40							1
																				3.75		
																						V.
																						197.00

第4页共5页

女****

各注:■T37-T38 为底质(沉积物)测点位置。

第5页共5页

检验检测机构 资质认定证书

证书编号:221012340348

名称:江苏新锐环境监测有限公司

地址:江苏省苏州市张家港市张家港经济开发区杨舍镇新泾西路

2号(215600) 经审查,你机构已具备国家有关法律、行政法规规定的基 本条件和能力, 现予批准, 可以向社会出具具有证明作用的数 据和结果,特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任,由 江苏新锐环境监测有限公司承担。

许可使用标志

221012340348

发证机关:

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

附件8: 建设用地土壤污染状况调查质量控制记录表

表 1 建设用地土壤污染状况调查采样方案检查结果

序号	检查环节	检查项目	检 査 要 点	检查结果	检査意见
1		资料收集	资料收集是否全面。 要点说明:地块资料收集尽可能全面、翔实,能支撑污染识别结论。主要包括:地块利用变迁资料、地块环境资料、地块相关记录、有关政府文件、以及地块所在区域的自然和社会信息。当调查地块与相邻地块存在相互污染的可能时,须调查相邻地块的相关记录和资料。	☑ 是 □否	资料收集全面。 (含地块规划材料、地块权属证 明资料、地勘报告及环评报告)
2	第一阶段土 壤污染状况 调查	现场踏勘	现场踏勘是否全面。 要点说明:关注现场踏勘是否遗漏重点区域,应有现场照片及相关描述,必要时可现场检查。重点踏勘对象一般应包括:有毒有害物质的使用、处理、储存、处置;生产过程和设备,储槽与管线;恶臭、化学品味道和刺激性气味,污染和腐蚀的痕迹;排水管或渠、污水池或其它地表水体、废物堆放地、井等。同时应该观察和记录地块及周围是否有可能受污染物影响的居民区、学校、医院、饮用水源保护区以及其它公共场所等,并明确其与地块的位置关系。	☑ 是 □否	现场踏勘全面。 (包含地块现状、有毒有害物质 及设备清理情况、气味恶臭情况、 有无明显污染痕迹情况、周边敏 感目标距离等情况)
3		人员访谈	人员访谈是否合理、全面。 要点说明:访谈人员选择应合理,受访者为地块现状或 历史的知情人,应包括:地块管理机构和地方政府的官 员,生态环境行政主管部门的官员,地块过去和现在各 阶段的使用者,以及地块所在地或熟悉地块的第三方, 如相邻地块的工作人员和附近的居民。人员访谈应有照 片、记录等支持材料,访谈内容应包括资料收集和现场 踏勘所涉及的疑问,以及信息补充和已有资料的考证。	☑ 是 □否	人员访谈合理、全面。 (含地块使用者、政府管理人员 和地块周边居民共3人)

序号	检查环节	检查项目	检 査 要 点	检查结果	检査意见
4	第一阶段土 壤污染状况 调查	污染识别 结论	污染识别结论是否准确。 要点说明:结论应明确地块内及周围区域有无可能的污染源,并进行不确定性分析。若有可能的污染源,应说明可能的污染类型、污染状况和来源,并应提出第二阶段土壤污染状况调查的建议。重点关注疑似污染区、污染介质、特征污染物等分析是否准确,是否能支撑第二阶段土壤污染状况调查布点。	☑ 是 □否	污染识别结论准确。 (识别出第二阶段需关注污染物 及潜在污染源)
5		点位数量	点位数量是否符合要求。 要点说明:点位数量应当主要基于专业的判断,原则上地块面积≤5000m²,土壤采样点位数不少于3个;地块面积>5000m²,土壤采样点位数不少于6个,并可根据实际情况酌情增加。若可能存在地下水污染的,应布设地下水点位。	□是□否	点位数量符合要求。 (土壤点位共9个,地下水点位5 个)
6	第二阶段土 壤污染状况 调查初步采 样分析	布点位置	布点位置是否合理。 要点说明:布点位置应当主要基于专业的判断。(1)土壤点位:应当以尽可能捕获污染为目的,根据第一阶段土壤污染状况调查识别出的疑似污染区域,选择可能污染较重的区域进行布点,布点位置需明确,并给出合理理由,原则上应当在疑似污染区域污染最重的地方或有明显污染的部位布设。对于污染较均匀的地块(包括污染物种类和污染程度)和地貌严重破坏的地块(包括拆迁性破坏、历史变更性破坏),可根据地块的形状进行系统随机布点。(2)地下水点位:地下水点位应当沿地下水流向布设,在地下水流向上游、地下水可能污染较重区域和地下水流向下游分别布设。未布设地下水调查点位须有合理的理由。若需调查确定地下水流向及地下水位,可结合土壤污染状况调查阶段性结论,间隔一定距离按三角形或四边形至少布置3~4个点位监测判断。	□是□否	点位布设合理。

序号	检查环节	检查项目	检查要点	检查结果	检査意见
7	第二阶段土 壤污染状况 调查初步采 样分析	采样深度	采样深度设置是否科学。 要点说明: (1) 土壤采样深度(钻探深度和取样位置): 应当综合考虑污染物迁移特点、地层渗透性、地下水位、 地下构筑物和地下设施埋深及破损等情况,结合现场筛 选及相关经验判断后确定。原则上应当包含表层样品 (0~0.5m)和下层样品。0.5m以下的下层土壤样品根据 判断布点法采集,建议0.5~6m土壤采样间隔不超过2m; 不同性质土层至少采集一个土壤样品。同一性质土层厚度较大或出现明显污染痕迹时,根据实际情况在该层位增加采样点。一般情况下,最大深度应当至未受污染的深度为止。(2) 地下水采样深度: 应根据监测目的、所处含水层类型及其埋深和相对厚度来确定监测井的深度,且不穿透浅层地下水底板。一般情况下采样深度应当在监测井水面0.5m以下。对于低密度非水溶性有机污染物,监测点位应当设置在含水层顶部;对于高密度非水溶性有机污染物,监测点位应当设置在含水层底部和不透水层顶部。	□是否	采样深度设置合理
8		检测项目	检测项目设置是否全面合理。 要点说明: (1)土壤检测项目原则上应当根据保守原则确定,应当包含《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中的45项基本	□是□否	检测项目设置合理。(土壤检测 因子涵盖GB36600-2018中45以及 关注污染物;地下水与土壤一 致)

序号	检查环节	检查项目	检查要点	检查结果	检査意见
			项目和地方相关标准中的基本项目,以及第一阶段土壤 污染状况调查识别出的其他特征污染物(包括可能存在 的污染物及其在环境中转化或降解产物)。 (2)地下水检测项目至少应当包含特征污染物。未完 全包含第一阶段土壤污染状况调查确定的特征污染物, 需给出合理理由。		

表2 建设设用地土壤污染状况调查现场采样检查结果

序号	检查环节	检查项目	检 査 要 点	检查 结果	检查意见
1	布点位置	采样方案	对照采样方案,检查布点位置及确定理由是否与现场情况一致。 涉及现场调整点位的,需检查点位调整是否合理。	⊿ 是 □否	点位与方案一致,未发现点位偏离情 况。
2	土孔钻探	土孔钻探	土孔钻探设备、深度、岩芯是否符合要求。 ①应当采用冲击钻探法或直压式钻探法等钻孔方式; ②钻孔深度应当与采样方案的要求一致,或按照采样方案中设置的钻探深度确定原则,根据实际情况确定; ③岩芯应当在整个钻探深度内保持基本完整、连续,可支撑土层性质、污染情况(颜色、气味、污染痕迹、油状物等)辨识及现场快速检测筛选。	□是□否	土孔钻探设备、深度、岩芯符合要求。 (采用直压式钻探法钻孔深度与方 案一致,岩芯完整每段样品均进行快 筛)
3		交叉污染 防控	交叉污染防控措施是否规范。 ①原则上使用无浆液钻进方式; ②原则上钻探过程中应当全程套管跟进,套管之间的螺 纹连接处不应使用润滑油; ③所用的设备和材料应清洗除污。	□是 □否	交叉污染防控措施规范。 (使用无浆液钻进方式,钻探过程中 应当全程套管跟进所用的设备和材 料应清洗除污)
4		监测井 建设	滤水管位置、滤料层及止水层设置是否满足采样方案及 相关技术规范的要求。	□是 □否	滤水管位置、滤料层及止水层设置满 足相关技术规范的要求、
5	地下水监测井建设	成井洗井	成井洗井是否达标。 原则上应保证洗井出水至水清砂净,或现场水质参数测试结果稳定,或至少洗出 3 倍井体积的水量。可参考《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019)。	□是□否	成井洗井满足要求。 (现场水质参数测试结果稳定且洗 出 3 倍井体积的水量)

序号	检查环节	检查项目	检 査 要 点	检查 结果	检査意见
6	地下水监测井建设	交叉污染 防控	交叉污染防控措施是否规范。 ①建井所用井管、滤料及止水材料应当不会对地下水水质造成污染; ②洗井前应当清洗洗井设备和管线; ③使用贝勒管时,一井配一管; ④井管连接方式满足要求,避免使用任何粘合剂或涂料	□是 □否	交叉污染防控措施满足规范。 (滤料为清洗干净的石英砂,使用贝 勒管时,一井配一管,井管连接方式 满足要求)
7		采样深度	采样深度是否合理,是否经现场辨识或筛选。 ①与采样方案设计一致,或按照采样方案中设置的采样深度确定原则,根据实际情况确定;下层土壤的采样深度应考虑污染物可能释放和迁移的深度(如地下管线和储槽埋深)、污染物性质、土壤的质地和孔隙度、地下水位和回填土等因素; ②每一深度样品,应当在通过颜色、气味、污染痕迹、油状物等现场辨识或现场快速检测筛选出的污染相对较重的位置进行取样。	☑ 是 □否	采样深度合理且经现场辨识或筛选。 (采样深度与方案一致,现场未发现 颜色、气味、污染痕迹较明显的地方)
8	土壤样品采集与保存	挥发性有 机物样品 采集	VOCs 样品采集是否规范。 ①应优先采集用于测定 VOCs 的土壤样品; ②VOCs 污染、易分解有机物污染、恶臭污染土壤的采 样应采用无扰动式的采样方法和工具,禁止对样品进行 均质化处理,不得采集混合样; ③样品采集后应当置入加有甲醇保存剂的样品瓶中,并 立即进行密封处理。	☑ 是 □否	VOCs 样品采集规范。(优先采集用于测定 VOCs 的土壤样品不存在扰动情况,挥发性有机物采集 3 份于40mL 棕色螺口玻璃瓶中(其中 2 份添加 10mL 甲醇))
9		样品保存 条件	样品保存条件是否符合要求。 ①应根据污染物理化性质等,选用合适的容器保存土壤样品; ②检测项目为 VOCs 或恶臭的土壤样品应采用密封性的采样瓶封装; ③VOCs 样品装瓶后应密封在塑料袋中,避免交叉污	☑ 是 □否	样品保存条件符合要求。(样品中 pH 值和重金属(除汞以外)样品采 集于聚乙烯自封袋中,汞、半挥发性 有机物和石油烃(C10-C40)样品

序号	检查环节	检查项目	检 査 要 点	检查 结果	检査意见	
			染; ④检测项目为汞或有机污染物的土壤样品应在4℃以下 保存和运输。		采集于250mL棕色玻璃瓶中,挥发性	
10		样品检查	已采集样品是否符合要求。 ①已采集样品类型、数量应当满足采样方案要求; ②样品应按检测项目类型分别采集装瓶; ③样品重量或体积应当满足检测要求。	☑ 是 □否	有机物采集3份于40mL棕色螺口玻璃瓶中(其中2份添加10mL甲醇))	
11		采样前洗 井时间	采样前洗井时间是否符合要求。 成井洗井结束至少24小时后方可进行采样前洗井和采 样。	□是□否	采样前洗井时间符合要求。 (成井洗井结束至超过24小时)	
12	地下水样 品采集与 保存	采样前 洗井	采样前洗井是否达标,是否按要求执行。 现场水质测试浊度小于或等于10NTU时或者当浊度连续 三次测定的变化在±10%以内、电导率连续三次测定的变 化在±10%以内、pH连续三次测定的变化在±0.1以内;或 洗井抽出水量在井内水体积的3~5倍时,可结束井。对 于低渗透性地块难以完成洗井出水体积要求的,可按照 《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019—2019)中"低渗透性含水层采样方法"要求执 行。	□是□否	采样前洗井达标。 (现场水质参数测试结果稳定)	
13		采集VOCs 样品采集 前洗井方 式	采样前洗井方式是否符合要求。 需要采集VOCs样品的,采样前洗井不得使用反冲、气 洗的方式。	□是 □否	采样前洗井方式符合要求。 (使用贝勒管洗井)	
14		交叉污染 防控	交叉污染防控措施是否规范。 ①在采集不同监测井水样时需清洗采样设备; ②使用贝勒管时,一井配一管。	□是□否	交叉污染防控措施规范。 (使用贝勒管一井一管)	

序号	检查环节	检查项目	检查要点	检查 结果	检查意见
15		VOCs样品 采集	VOCs样品采集是否规范。 ①应根据水文地质条件、井管尺寸、现场采样条件等,选择合适的采样方法,一般情况下,应优先选择低速采样方法; ②优先采集用于测定VOCs的地下水样品; ③控制出水流速,最高不超过0.5L/min; ④样品瓶不存在顶空或气泡。	□是□否	VOCs样品采集规范。 (优先采集VOCs样品,样品瓶不存 在顶空或气泡)
16		样品保存 条件	样品保存条件是否符合要求。 ①根据检测目的、检测项目和检测方法的要求,参照《地下水环境监测技术规范》(HJ164—2020),在样品中加入保存剂; ②避免日光照射,并置于4℃冷藏箱中保存。	□是□□否	样品保存条件符合要求。(实验室分析中铜、铅、镍、镉样品采集于500mL聚乙烯瓶并加入5.0mL浓硝酸,汞和砷采集于500mL聚乙烯瓶并加入5.0mL浓盐酸,六价铬采集于500mL聚乙烯瓶并加入氢氧化钠,pH约为8~9,挥发性有机物采集于40mL棕色吹扫瓶,加入20mg抗坏血酸,加入盐酸pH≤2,半挥发性有机物采集于1000mL棕色广口瓶,可萃取性石油烃(C10-C40)采集于1000mL棕色广口瓶并加入盐酸pH≤2,氨氮、耗氧量采集于1000mL聚乙烯瓶并加入硫酸pH≤2)
17		样品检查	已采集样品是否符合要求。 同土壤样品检查。	☑ 是 □否	己采集样品符合要求。
18	样品流转	样品流转	样品流转是否符合要求。 ①样品保存时效应当满足相应检测项目的测试周期要求;②样品保存条件(包括温度、气泡及保护剂等)应	∠ 是 □否	样品流转符合要求。(样品均在有效 期内,保存条件符合要求,样品完整 无破损,送样单与实际一致)

序号	检查环节	检查项目	检 査 要 点	检查 结果	检査意见
			当满足全部送检样品要求;③样品包装容器应当无破损,封装完好;④样品包装容器标签应当完整、清晰、可辨识,标签上的样品编码应当与"样品运送单"完全一致;⑤"样品运送单"与实际情况一致。		

表 3 建设设用地土壤污染状况调查实验室检查结果

序号	检查环节	检查项目	检 査 要 点	检查 结果	检查意见
1	检验检测 机构资质	机构资质	* 检验检测机构检测项目是否符合要求。 检测项目不存在非 CMA 资质认定项目,通过检查资质 认定 CMA 检测能力表及检测范围判定,若选"否",请 记录项目名称。	☑ 是 □否	点检验检测机构检测项目符合要求。
2	与能力	机构分包 情况	检验检测机构分包是否符合要求和管理程序(若存在分包项目,则检查此项,否则不检查)。	⊿ 是 □否	检验检测机构分包符合要求和管理 程序。
3		机构检测 能力	检验检测机构能力是否与其承担的任务量匹配。 通过检查其人员投入、设备和检测能力等要素判定。	⊿ 是 □否	检验检测机构能力与其承担的任务 量匹配(实验室共计检测人员 30 个)
4	分析方法	分析方法	所用分析方法是否满足要求。 所用分析方法原则上优先选择《土壤环境质量 建设用 地土壤污染风险管控标准(试行)》(GB 36600—2018) 或《地下水质量标准》(GB/T 14848—2017)推荐的分 析方法,对于 GB 36600 和 GB/T 14848 中未给出推荐方 法的,可选用检验检测机构资质认定范围内的国际标 准、区域标准、国家标准及行业标准方法。	☑ 是 □否	所用分析方法满足要求。
5	选择与 验证	方法验证	是否按照《环境监测分析方法标准制订技术导则》(HJ 168—2020)要求进行方法验证。	☑ 是 □否	所有方法均按照《环境监测分析方法 标准制订技术导则》(HJ 168—2020) 要求进行方法验证。
6		土壤样品 分析方法 检 出 限	选用的土壤样品分析方法检出限是否全部低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)第二类用地筛选值要求或相关评价标准限值要求。	☑ 是 □否	选用的土壤样品分析方法检出限低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)第二类用地筛选值要求或相关评价标准限值要求

序号	检查环节	检查项目	检 査 要 点	检查 结果	检查意见
7	分析方法 选择与 验证	地下水样 品分析方 法检出限	选用的地下水样品分析方法检出限是否全部低于《地下水质量标准》(GB/T 14848—2017)地下水质量指标III 类限值要求或相关评价标准限值要求。	☑ 是 □否	选用的地下水样品分析方法检出限低于《地下水质量标准》(GB/T 14848—2017)地下水质量指标III类评价标准限值要求。
8		样品保存 期限	检测样品保存期限是否满足要求。 检测样品不得超过样品保存期限,可通过检查样品流转 单与样品起始分析时间相关记录判定。	☑ 是 □否	检测样品保存期限满足要求。
9		土壤样品制备	土壤样品制备操作过程是否规范。 主要针对重金属和无机物,需现场检查,重点关注取样、 交叉污染等。	☑ 是 □否	土壤样品制备操作过程规范。
10	样品分析 测试过程	土壤样品 制样记录	土壤样品制样记录是否清晰可追溯。 重点关注样品原样、粗磨、细磨及弃样量信息。	☑ 是 □否	土壤样品制样记录清晰可追溯。
11		实验室 内部质控	内部质控样品插入、分析及结果评价是否满足要求。 空白样、定量校准、平行样、标准物质样/加标回收样等 内部质控样品应与调查样品同步分析,插入比例及结果 评价应满足分析方法标准的要求,从样品称量开始、样 品前处理至样品仪器分析全过程都应保持内部质控样 与调查样品一致。如有问题请按项目说明。	☑ 是 □否	内部质控样品插入、分析及结果评价 满足要求。(详见质控报告)
12		数据 一致性	检测报告与原始记录中数据是否一致。	☑ 是 □否	检测报告与原始记录中数据一致。
13	数据 溯源性	数据准确性、逻辑性、可比性和合理性	检测数据的准确性、逻辑性、可比性和合理性是否均合格。	☑ 是 □否	检测数据的准确性、逻辑性、可比性 和合理性均合格。
14		异常值判 断和处理	对异常值的判断和处理是否合理。	☑ 是 □否	对异常值的判断和处理合理。

红阴山	江阴市徐霞客镇黄泥头路东、	头路东、湖庄村路南地块土壤污染状况调查报告专家组签到表	污染状况调查报台	音家组签到表
安 琳		工作单位	联系方式	松字
光器	.T.语	南京市生态环境保护科学研究院	18951651727	朱 茨.
黎 克 <u></u> 姬	江連	江苏省有色金属华东地质勘查局地球 化学勘查与海洋地质调查研究院	13851485568	uzy
三:40	通江	常州工學院	13775030676	五月
				2024年3月29日

江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告评审会 现场签到表

地点:无锡市江朔生态环境局8楼会议室

时间: 2024年3月29日

<u> </u>			1	
序号	姓名	单位	职称	联系方式
1				
2	张磊	南京市环科院	高工	18/51651727
3	ひえよ	华东海海路吃	袁2	13851485568
4	=717L	常州工荟鸭	高工	1377513616
5				
6	威克娅)	22例平环保集型		13906/647)
7	国健	22 制产环保集团 覆客逻辑写成		139 1520 9768
8	编账生	经规定		1896165085
9	并	江門をもれるる		18961650851 18961650851
10	7	, ,		·

专家组评审意见表					
项目名称	项目名称 江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告				
业主单位 江阴市霞客湾科学城开发建设有限公司					
☑调查报告 □风险评估 项目类型					
项目类型 □风险管控效杲评估 □修复效杲评估					
报告编制单位 江阴市环保集团有限公司					
项目负责人 赵梦佳					
对被评审报告的总体评价					
□建议通过					
☑建议根据专家意见修改完善后通过					
□存在重大瑕疵和纰漏,建议不予通过					
具体意见					
一、该报告土壤污染现状调查程序和方法基本符合国家相关标准规范要求;报					
告内容较全面。地块及周边当前和历史上均不存在潜在污染源,地块满足规划用地环					
境质量要求。报告结论总体可信,通过评审,经修改完善后可作为下一步工作的依据。					
二、建议					
1. 核实地块范围及拐点坐标。进一步收集地勘资料;					
2. 补充的	决筛点位设置的依据;				
3. 完善3	现场记录、照片等全过程质控材料。				

王介2 2019年3月29日

张鑫

专家签名

评审时间

专家个人评审意见表

1 304 3 441 31 10 20 84				
项目名称	江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告			
业主单位	江阴市價客灣科学城开发建设有限公司			
项目类型	☑调查报告 □风险评估 □风险评估			
报告编制单位	江阴市环保集团有限公司			
项目负责人	赵梦佳			
对被评审报告的	总体评价			
□建议通过				
☑建议根据专	家意见修改完善后通过			
□存在重大瑕	疵和纰漏,建议不予通过			
具体意见				
1. 3,1.3 =	节,补充地块周边水系情况说明;			
2. 表6.5-1补充快筛设备检出限。				
3. 梳理完善快筛设备校准记录(照片)等附件材料。				
,				
专家签名	张磊			
评审时间	2024 年 3 月 29 日			

无锡市建设用地土壤污染状况调查报告编制质量评价要点

项目名称:江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告

评价要点	主要评价内容	全	李令
	污染影响的区域等重点内容		
	7、 人员访谈开展的全面性、有效性 ,如:访谈对象选取是否具有代表性、针对性和全面性,访谈信息是否有效可查,对访谈信息是否进行了充分甄别和整理	2	٨
	8、 宣点区域识别全面性 ,如,是否充分考虑生产、贮存、堆存、填埋、污染排放、污染防治、罐槽管线、污染泄露及痕迹、污染物迁移转化、相邻影响等可能存在污染的相关区域。	4	\
	9、水文地质调查规范性、与调查需求相符性。地块土层分布特征、含水层渗透性等。地下水埋深、厚度、分布、补给径流和排泄、流速流向、水力坡降等水文地质调查是否满足地块调查乃至后续风险评估要求	4	/
三、布点米样与建设方案	▲▲10、布点位置合理性、针对性、全面性、准确性;布点数量、祥品数量是否符合规范要求且充分,来样深度是否符合规范、设置科学、依据明确;监测介质全面性,是否充分考虑了土壤、地下水、地表水、底泥以及地块残余废弃物等	9	\
(30%)	污染物识别 全面性 或开发利用等后续	9	`
	12、采样测试方案科学性、合理性,现场采祥工作计划、采祥方案、具体采祥方法、采祥设备、祥 品流转安排、健康和安全防护方案、实验室样品分析方案等制定是否科学、准确、全面、有针对性	9	1
	13、 质量保证措施完善性、有效性 ,现场采样、样品流转及实验室分析的质量保证和质量控制措施是否科学有效,对照点、对照样设置合理,空白样、平行样及运输样等质控样品是否考虑充分	4	\
B 安 龙	位准确性, 采样现场5效。涉及点位异常等5分合理,污染范围宏计样是否满足需求	7	<u> </u>
2、88年午 客账審酬令 表53年)	▲▲15、采 样方法规范性、科学性, 如:土壤钻探、地下水滩井、洗井等方法、程序是否科学规范,土壤和地下水等样品采集方法、取样工具、样品容器选择等是否合理,质控措施是否到位	ν,	\
(W Cm) Id.	16、 样品保存、流转的规范性、合理性 ,样品流转方式、流转时间、保存容器、保存条件等是否规范、有序、质控措施是否到位	4	\
	▲▲17、 实验室分析 方法选取是否规范、合理,分析检测、质量控制和质量保证措施是否完善、科	S	\

评价要点	主要评价内容	分值	争
_	学、到位,检测数据是否可信		
	3. 记录 5.井、采 5.品物备	4	J
	19、 检测报告 内容是否全面、准确、详实,编制是否规范,如:祥品编号、检测项目、分析方法与时间、检测结果、质量控制与质量保证等内容完善,签字盖章完整	EU	\
五、数据结果	20、 样品检测数据 等标准选取是否合 点排查分析情况	v	2
分析与评价 (16分)	21、污染源源源分析是否充分、合理、可信	4	\
20	22、 污染范围、深度、类型、程度的划定和分析 是否科学、合理、清晰、明确,污染范围是否有明确原定	9	\
- 1 1	▲▲23、报告结论是否完整、明确、可信,论述是否清晰、准确、规范,是否明确了地块污染物种类、浓度和空间分布以及是否需要进一步风险评估	4	4
六、俗名真女及形件 《日》	24、给出的建议是否科学、合理、有针对性,不确定性分析是否合理、充分	2	N
€	▲▲25、报告整体是否规范、清晰,各类附件是否齐全,附件内容是否完整、规范,如:报告正文插图、表,报告附图、附表、检测报告、工勤报告、调查现场影像照片、营业执照、检测资质、检测项目认证明细、访谈记录等	7	9
	合计	190	9 (2)
评分结果:			
]报告满分1(口报告满分100分,该报告评分: 87		

评价要点	か位	中
备注: 1、按照主要评价内容对报告逐项进行评分,每项评价内容得分最多可保留一位小数,和分要充分考虑并反映该和分项对相应评价内容及对报告整体结论准确性的影响程度; 2、对于报告不涉及的评价内容不予计分,却除相应评价内容分值后计算总分,再将实际最终打分折算为百分制;		
3、对于标注"▲▲"的评价内容,专家认为报告在该项评价内容方面存在重大问题可能导致报告结论出现重大偏差的,报告评审不予通过,在最高分60分的基础上,每有一项"▲▲"项存在重大问题和10分,其他非"▲▲"项无需再打分。并在此处详细说明存在的重大问题及其对报告结论造成的影响;		
		-
电频推导: 3% Sc.		
日期:2016年 3月29日		

专家个人评审意见表

	4 24 1 2 4 1 THE 2014
项目名称	江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告
业主单位	江阴市霞客湾科学城开发建设有限公司
项目类型	☑调查报告 □风险评估 □风险评估
报告编制单位	江阴市环保集团有限公司
项目负责人	赵梦佳
对被评审报告的	总体评价
□建议通过	
☑建议根据专	家意见修改完善后通过
□存在重大瑕 □ □ 存在重大瑕	疵和纰漏,建议不予通过
具体意见	
 1、P15 补充说明	引用工勘报告的合理性,核实地下水流向判定的合理性(引用工勘报
 告地块与调查地	块之间有河流阻隔〉。
2、P21, 完善图	件绘制(项目周边 500m 范围敏感目标示意图不准确)。
3、P41, 补充地	块现场踏勘照片及 地块现状描述 ,如东南部地表水水质情况。
	图显示T35和T39布设在地表水体内,但后面附件材料中的点位位置与
照片不相符,请	
	&
6、建议任地块外	·选择一处未受扰动区域布设土壤快筛对照点。
	er e e
专家签名	这为安
评审时间	年月日 2024、3 29

无锡市建设用地土壤污染状况调查报告编制质量评价要点

项目名称:江阴市徐霞客镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告

评价要点	主要评价内容	か信	命令
×	1、對面庫页等内容完整性、規範性、如:项目名称,项目委托方名称及其公章、编制机构名称及其公章、项目仓毒人、查告编辑人、据导省核对制指关人员及计图线、专业、有效联及方式、水多线		
	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2	7
一、前音概述			
(₹9)	2、前宫概述全面性、规范性,如:项目背景及调查目的、原则、程序、方法、报告编制依据等是否	,	
	全面、规范、合理、有效、有针对性	7	<u> </u>
	3、调查范围合理性、明确性,地块名称、位置、边界、面积等信息描述是否准确、规范,调查地块	,	
	边界是否充分依据地块利用历史或拟收储、开发利用规划进行划定	7	7
	4、区域环境概况舒对性、有效性,如:地形地貌、气候气象、土壤、水文地质、经济现状和发展规		
	划、人口密度和分布、地方性疾病统计信息等资料论述情况。	,	,
2	周边地块情况论述全面性、针对性,如:相邻地块使用历史与现状、土地利用方式及未来规划,周	7	4
	边敏感目标情况,相邻地块与调查地块之间相互影响		}
	5、地块使用历史和现状论述准确全面性、针对性,地块利用规划明确、依据充分、有效。如:资料		
	收集全面性和针对性,如地块历史卫星图片、原土地承包协议(土地证、房产证)、征地相关文件、		
火焼牛草(境影响评价文件等;地块历史情况是否充分收集者;		
(12年)		,	,
(***)		4	7.
,	及设施、调查监测等情况;		
	地块现状是否充分收集考虑了地块目前使用状况和信息,场区平面布置,现场污染痕迹、残留设施		
	及化学品、废水、废弃物等情况		
	储存、处置,生产过程和设备,储槽与管线,恶奠、化学品味道和刺激性气味,污染和腐蚀痕迹。	4	~
	排水管或沟渠、污水池或其他地表水体,废物堆放或填埋区域,废弃或在用地下水井,地块可能受		`

评价要点	主要评价内容	全債	44分
	污染影响的区域等重点内容		
	7、 人员访谈开展的全面性、有效性 ,如:访谈对象选取是否具有代表性、针对性和全面性,访谈信息是否对行了充分甄别和整理	2	7
	8、重点区域识别全面性,如:是否充分考虑生产、贮存、堆存、填埋、污染排放、污染防治、罐槽管线、污染泄露及痕迹、污染物迁移转化、相邻影响等可能存在污染的相关区域	4	
	9、水文地质调查规范性、与调查需求相符性、地块土层分布特征、含水层渗透性等、地下水埋深、厚度、分布、补给径流和排泄、流速流向、水力坡降等水文地质调查是否满足地块调查乃至后续风险评估要求	4	į.
三、布点米祥与强化本	▲▲10、布底位置合理性、针对性、全面性、准确性;布点数量、样品数量是否符合规范要求且充分,采样深度是否符合规范、设置科学、依据明确;监测介质全面性,是否充分考虑了土壤、地下水、地表水、底泥以及地块残余废弃物等	9	4
(#\mu \)	▲▲11、 特征污染物识别 全面性, 确定的检测因子 全面性、合理性和科学性,以及是否足以支撑下一步风险评估或开发利用等后续工作	9	
	12、果样测试方案科学性、合理性,现场采样工作计划、采样方案、具体采样方法、采样设备、样品流转安排、健康和安全防护方案、实验室样品分析方案等制定是否科学、准确、全面、有针对性	9	
	13、 质量保证措施完善性、有效性 ,现场采样、样品流转及实验室分析的质量保证和质量控制措施 是否科学有效,对照点、对照样设置合理,空白样、平行样及运输样等质控样品是否考虑充分	4	
是	14、果样点位定位准确但手段是否合理有效。涉及密,依据是否充分合理。 密,依据是否充分合理;所需加密布点来样是否满	7	
1、888千年 告於聯酬令 第234)		ۍ .	
(XC+) (A.	16、 样品保存、流转的规范性、合理性 ,样品流转方式、流转时间、保存容器、保存条件等是否规范、有序,质控措施是否到位	4	
	▲▲17、实验室分析方法选取是否规范、合理,分析检测、质量控制和质量保证措施是否完善、科	'n	

评价聚点	主要评价内容	を信	水水
N	学、到位,检测数据是否可信		
2	18、相关记录链条是否完整、可追溯,记录是否齐全、可信、规范,人员签字是否完整,如;现场钻孔、采样记录,地下水井成井、洗井、采样记录,现场快筛、监测记录,样品保存、流转、交接等记录单,有关影像记录,实验室样品制备、检测等原始记录	4	4 5
	19、检测报告内容是否全面、准确、详实,编制是否规范,如:样品编号、检测项目、分析方法与时间、检测结果、质量控制与质量保证等内容完善, 签字董章完整	60	
五、秦振徐東	20、祥品检测数据汇总整理分析是否全面、准确、清晰,土壤污染风险曾控标准、地下水质量标准等标准选取是否合理、准确,相关标准未涉及到的污染物评价标准取值是否科学、合理,数据异常点排查分析情况	9	
	21、污染源濃霭分析是否充分、合理、可信	4	
•	22、污染范围、深度、类型、程度的划定和分析是否科学、合理、清晰、明确,污染范围是否有明确界定	9	
7.4	▲▲23、报告结论是否完整、明确、可信,论述是否消晰、准确、规范,是否明确了地块污染物种类、浓度和空间分布以及是否需要进一步风险评估	4	7
人、智的模式及配件 (13	24、给出的建议是否科学、合理、有针对性,不确定性分析是否合理、充分	7	7
₩	▲▲25、报告整体是否规范、清晰,各类附件是否齐全,附件内容是否完整、规范,如:报告正文插图、表,报告附图、附表、检测报告、工勘报告、调查现场影像照片、营业执照、检测资质、检测项目认证明细、访谈记录等	7	谷
	合计	100	
评分结果;			2
口报告清分100分,	1分,该报告评分;		84.1

",每项评价内据得分最多可保留一位小数,扣分要充分考虑并反映着性的影响程度; 右降相应评价内容分值后计算总分,用将实际最终打分折算为百分	
中国	
去数认为据各在该语译你均离方面存在看大问题可能导致指导线形型意	
大偏差的,报告评审不予通过,在最高分60分的基础上,每有一项"▲▲"项存在重大问题和10分,其他非"▲▲" 项无需再打分。并在此处详细说明存在的重大问题及其对报告结论造成的影响;	
Þ	
	The state of the s

专家个人评审意见表

项目名称	江 阴市徐霞客镇黄泥头路东	、湖庄村路南地块土壤污染状况调查报告
业主单位	江阴市霞客海	尊科学城开发建设有限公司
-E D 44 50	☑调查报告	□风险评估
项目类型	□风险管控效果评估	□修复效果评估
报告编制单位	江阴市	5环保 集团有限 公司
项目负责人		赵梦佳
对被评审报告的	总体评价	
□建议通过		
☑建议根据专	家意见修改完善后通过	
□存在重大瑕	疵和纰漏,建议不予通过	
目休音回		

- 1、核实地块拐点坐标, X为7位, Y为6或者8位, 且与附件资料不一致;
- 2、优化章节标题,第6章为现场快筛,地表水和底泥检测不属于快筛内容:::
- 3、核实引用地勘资料,流场不具有参考价值,两个地块中间存在地表水体;
- 4、完善快筛点位布设图,补充网格信息,(图6.1-1),补充快筛点位坐标信息;
- 5、核实现场采样深度,表层土还是0-0.5m的土? 附件记录为0.02m;
- 6、地表水和底泥编号是一个吗?建议核实,附件中水质检测报告出现W1和W2;
- 7、关注T2、T3、T34快筛点砷的浓度,接近…类用地筛选值,表6.5-2与表6.5-1的数 据一致性需要关注(表6.5-2砷最大值为20,表6.5-1砷最大值为19.543);
- 8、补充地表水以及底泥现场平行样采集及实验室分析内容;
- 9、地块内和地块外的地表水和底泥样品建议分别评价:
- 10、完善人员访谈材料,周边居民访谈内容中地表水用途?
- 11、补充附件资料清单,补充建设用地土壤污染状况调查质量控制记录表。

专家签名	王章
评审时间	2024年 3月 29 日

无锡市建设用地土壤污染状况调查报告编制质量评价要点

項目名称:江阴市徐霞容镇黄泥头路东、湖庄村路南地块土壤污染状况调查报告

字价要点 1. 對面庫頂等內聲完整性、規稿性,如: 项目经形方籍及其公章,编制机构名籍及其公章,编制机构名籍及其。公章、项目负责人、章节编制人、报告申核机制相接人员及其职称、专业、省效联系方式、签字等(6分) 2. 前重概法全面性、规范性,如: 项目等无法支撑项目正常开展的情况;报告编集之资验、准确、有条 2. 前重概是全面性、规范性,如: 项目前是是公院,报告编制机构全籍及其。 3. 调查规则是全型性、规则性、地块系统、位置、边界、信息、主流、报告编制依据等是否定。 4. 区域环境配价对性、有效性、如: 和形地线、气度、边界、信息、土壤、水文地质、经济规状和及展现 2. 请查规则是全面性、有效性、如: 相邻地块使用历史与现代、 4. 区域环境配价对性、有效性、如: 相邻地块使用历史与现代、 4. 区域环境配价对性、均均性疾病统计信息等资料论述情况; 1. 超级性层部设施、由于性疾病统计信息等资料论述情况; 1. 超级性层部或性不同型。 4. 区域环境化分对性、均均性层部或性分用反与现代。 5. 地块使用历史和现代链、开发利用规划进行则定。 1. 建筑、 4. 区域环境概况对性、 4. 区域环境性,如: 相邻地块使用历史与现代、 4. 建筑用度、 4. 区域环境概况, 4. 应域环境概况, 4. 应域形成, 4. 应线和设计的 2. 是一个主要原籍并及产品。 4. 数字 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
第 (6 (6 分) (12 分) (12 分) (12 分) (12 分)

评价要点	主要评价内容	分值	华
	污染影响的区域等重点内容		
	7、 人员访谈开展的全面性、有效性 ,如:访谈对象选取是否具有代表性、针对性和全面性,访谈信息是否有效可查,对访谈信息是否进行了充分甄别和整理	2	
¥1	8、 重点区域识别全面性, 如,是否充分考虑生产、贮存、堆存、填埋、污染排放、污染防治、罐槽管线、污染泄露及痕迹、污染物迁移转化、相邻影响等可能存在污染的相关区域	4	<
:	9、水文地质调查规范性、与调查需求相称性、地块土层分布特征、含水层渗透性等,地下水埋深、厚度、分布、补给径流和排泄、流速流向、水力坡降等水文地质调查是否满足地块调查乃至后续风险评估要求	4	
三、布成米样与测试方案	▲▲10、布底位置台理性、针对性、全面性、准确性;布点数量、样品数量是否符合规范要求且充分,采样深度是否符合规范、设置科学、依据明确;监测介质全面性,是否充分考虑了土壤、地下水、地表水、底泥以及地块残余废弃物等	9	
(*)s)	▲▲11、 特征污染物识别 全面性, 确定的检测因子 全面性、合理性和科学性,以及是否足以支撑下一步风险评估或开发利用等后续工作	9	
	12、果样测试方案科学性、合理性。现场采祥工作计划、采祥方案、具体采样方法、采祥设备、样品流转安排、健康和安全防护方案、实验室样品分析方案等制定是否科学、准确、全面、有针对性	9	
	13、 质量保证措施完善性、有效性 ,现场采样、样品流转及实验室分析的质量保证和质量控制措施 是否科学有效,对照点、对照样设置合理,空台样、平行样及运输样等质控样品是否考虑充分	4	
李	14、采样点位定位准确性,采样现场定位、探测方法是否科学有效,定位是否准确可靠,现场快筛手段是否合理有效。涉及点位异常等相关情况,是否对点位位置、深度或数量等进行合理调整或加密,依据是否充分合理;污染范围划定所需的加密布点采样是否满足要求,数据异常点位排查分析所需加密布点采样是否满足要求,数据异常点位排查分析所需加密布点采样是否满足需求	7	145
大学を を を を を を を を を を を を を を	▲▲15、果样方法规范性、科学性,如:土壤钻探、地下水建井、洗井等方法、程序是否科学规范, 土壤和地下水等样品采集方法、取样工具、样品容器选择等是否合理,质控措施是否到位	5	
Now Id.	16、 样品保存、流转的规范性、合理性、 样品流转方式、流转时间、保存容器、保存条件等是否规范、有序,质控措施是否到位	4	
#1	▲▲17、实验室分析方法选取是否规范、合理,分析检测、质量控制和质量保证措施是否完善、科	5	

评价要点	主要评价内容	今信	华
	学、到位,检测数据是否可信		2
	18、相关记录链条是否完整、可追溯,记录是否齐全、可信、规范,人员签字是否完整,如:现场钻孔、采样记录,地下水井成井、洗井、采样记录,现场快筛、监测记录,样品保存、流转、交接等记录单,有关影像记录,实验室样品制备、检测等原始记录	4	
2	19、检测报告内容是否全面、准确、详实,编制是否规范,如:祥品编号、检测项目、分析方法与时间、检测结果、质量控制与质量保证等内容完善,签字盖章完整	т	
五、数据结果	20、 样品检测数据 等标准选取是否合 点排查分析情况	9	= "
分析与评价 (16分)	21、污染源源源分析是否充分、合理、可信	4	
e a	22、污染苑图、深度、类型、程度的划定和分析是否科学、合理、清晰、明确,污染范围是否有明确界定	9	
1 1	▲▲23、报告结论是否完整、明确、可信,论述是否清晰、准确、规范,是否明确了地块污染物种类、浓度和空间分布以及是否需要进一步风险评估	4	
六、络乾栗蚊 及附件(13	24、给出的建议是否科学、合理、有针对性,不确定性分析是否合理、充分	2	
₩	▲▲25、报告整体是否规范、清晰,各类附件是否齐全,附件内容是否完整、规范,如:报告正文指图、表,报告附图、附表、检测报告、工勘报告、调查现场影像照片、营业执照、检测资质、检测项目认证明细、访谈记录等		>-
	合计	100	
评分结果:			
]报务激分1(□据各溢少1INI分,油港各评分。 入		

	か信	44
备注: 1、按照主要评价内容对报告逐项进行评分,每项评价内容得分最多可保留一位小数, 扣分要充分考虑并反映		-
该和分项对相应评价内容及对损告要体结论准确性的影响程度; 2、对于报告不涉及的评价内容不予计分。和除相应评价内容分值后计算总分,再将实际最终打分折算为百分 4		
n; 3、对于标注"▲▲"的评价内容。专家认为报告在该项评价内容方面存在重大问题可能导致报告结论出现重大偏差的,报告评审不予通过,在最高分60分的基础上,每有一项"▲▲"项存在重大问题和10分,其他非"▲▲"	15	
点汽柜车站分。并在另外下登记的布布的四人四域及水区供付路的电风时影响。		
专家签字: 主公司	2	
日期:ルが年 2 月29日		

江阴市徐霞客镇黄**泥头**路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(专家组)

修改建议	修改说明	修改示意(截图)
1.核范围坐进入,收资制,以为,以为,以为,以为,以为,以为,以为,以为,以为,以为,以为,以为,以为,	已拐并地具 调近无地勘已引告修点与图体 P4-P7地收流的报充工的性地标件致容。 块集阻工告说勘理块,宗,见 附到隔程,明报理。	M2.2-2 映映家地圏 大2.2-1 項目 映射点 全転 中田本田 大2.2-1 項目 映射点 全転 大2.2-1 项目 映射点 全転 大2.2-1 项目 映射点 全転 大2.2-1 项目 映射点 全联 大2.2-1 项目 映射 大2.2-1 项目 映射 大2.2-1 项目 明末 大2.2-1 项目 映射 大2.2-1 项目 映射 大2.2-1 项目 中元 1 元
2.补充快 筛点位设 置的依 据;	已补充快筛 点位设置的 依据,详见 报告 P49。	《建设用始上事写象状况但在核大导讯》(HJ251-2019)》以及的土壤点位 在设方法包括手领所机存点法。小业则的有点法。分区布点法和系统布点法。根 推各市水方法的适用事件,就释系标市从法、以 20m×20m 网络。在网络内语 行利点,采集表层土(0-0.2m):手工取去层土罐通行 PID、XRF 组场快幅组 足一本次供源共市设 50 个平样点 T1~T50。具体点位信号见数 6.1-1。市从图 见图 6.1-1。
3.完善现 场记录、 照片等全 过程质控 材料。	已完善现场记录、照片等全过程质控材料。详见附件。	

0944-1	Market T	Whitel.	WEST TREE	425 sate		Anna Segui
Hilling	E860	-inter	AMNO	Nil.B.	76 7 801	Response
Serger of Table 1	tav	- to peakly	44 t-ca.	de	TECHOL	The bolder half of these secure \$40.
MED Margarit	731-	Unitable.	Hen	40	MISSISS	68% pings
personal Print	76	100	MHE	4	飲金をは	MARGARITAN STATE
production .	-	/	100		- 4	Epidik,
-		9	17	7	1	
_						
-						
1		_	-			
					1	
APPENDANCE O DET IN O'DET TO DEC 13		MATE TO	as abudus a	*	PIC (THE RIP)	all.
Ett. +4	海をルー	双 5	1000		46.	A45 A 1.01

128 19888-2019 48

	inem Hui	61		化 器 校	J	ik satat		250E).	which .	
	Sans.	技術等(小規則形)	REBERT	menced.	SEAS.	SHAR	1000	20.40	Nava	400.0
147	and a little	HARRIE.	mbg/F-a	金属など 計算を持つ XXXの対象	114	GARAGE	2030	6 Back	* #2	to
95	Just to the state of the	Wi.	No. Wit	M. M. S. C. T. M. M. J. H. All Dress Res.	24-	4	200	1-5	a not	b
rdr.	SARTH THE TOTAL	#194°	inter	N. S. ST. A.		may	ĖST	-12	F B.R.	10
e dist	South () said.	old English	444414-94	W RE ATT	214	THE !	台部科	61000	11 B. M.	1
in:	Dayon () akir Karpan daga saga	-64-	ant en.	4 5 1/2 C 4 5 1/2 C 1 1/10 may Kin	day	110	tts	and t	1185	30
1-2	paper / H 4/1 Baltin Alksiny	£24	motor-	4 7 4 1 4 7 4 4 7 5 1 5 4	/agar	dage	树	THIS	N. S. S.	-

表 4.5.4 医療性療養療療法法

	WHER Y		351.								50.
	101.46	7.00	T	. M	. 1	7.	" al	-	. 0	F	
	0.68		1	2	- 0	L.	2		1.	1.0	1.1
71	-82	mylig	(08)	ff0	4586	48.5	_fve-	Uhwă:	(9.76)	20.696	11
12	8.2	mp kg	13/59	59	46.402	25.69	in	1961	348	15.86	1:
73	0.2	mp/kg	4860	1500 -	2.54	150,056	520	165376	1666	16.094	- 11

现场仪器校准照片:

	PH9 1	件8: 1	建设用	地土壤污染状况调查质量控	制记	录 表
T _r			24 2 4 10	* ***************		
17	7	MENT	****	CHARLES.	-	****
			10100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	Status Jacobski daren Mark Mark Mark
		L-121	niike	(大) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	31	TRATES.

专家复核签字:

2024.4.10

江阴市徐霞客镇黄泥头路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(专家组)

修改建议	修改说明	修改示意(截图)
1.核范点一地; 电极极 人名 电极 电极 人名 电极 电极 的 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	已修改标,图图内4-P7。调近无地勘已引的的设体,具见的人的一个的一个的一个的一个的一个的一个的一个的一个的一个的一个的一个。对于一个的一个的一个。对于一个的一个的一个。对于一个的一个的一个。对于一个	M 2.2-2
2.补充快 筛点位设 置的依据;	已补充快筛 点位设置的 依据,详见报 告 P49。	《建设用片上来方数状况而存储七导机》(HD251-2019)》是的土地点位 布雙方法包括手统储机布包法。少业州的布点法。好区布点法和系统布点法。根据各市地方生的适用工件,选择系统与办法、以 20m×20m 网络,在网络内进行作点,采集是是土 (0-0.2m);于工业未属土土通通行 PID、XRF 现场供源则之一本次供证共布设 50 与末样点 T1~T50、具体内位信息则是6.1-1、市人图图 6.1-1。
3.完善现 场记录、照 片等全过 程质控材 料。	已完善现场 记录、照片等 全过程质控 材料。详见附 件。	

住 器 校 推 记 城 STATE STATES Manifest Health seen with DESERT DESIGNATION OF THE PARTY OF THE SERVICE: RATE DAVE SELL 各两处型对 Street Street Street Street Street 2147 200 111 1411 June 2014 2014 ofted and 20 HERRICA P41 F45 7149 batte merete N. 11/2 4 ** tand 49 inter TARACLES AND AND THE NAME OF STREET #1×4 the same ing 65% WHERE IN THE STATE OF THE STATE TOTAL SPACE () HALL MAKENING State 6124 - 1941 78 BALLY. Alle Will . I Mills they King DAME I THE WAY --- 100 JX w Start Rechast States and 100 14-2 BATTON JASCARY \$74 Info 15% Impe

0.015	3 mm ()	10		731							
	2) m		467	4	100	18	91	· Bull per			
	0.57		1	13/	- 9	6	15	-9	1	- 1	0.5
7)	1,2	MAG.	1333	50	600	41.0	140.	1039	21786	22.598	0.5
7.	8.2.	mp/c	11914	100	99.60	0.88	50	79.61	29.160	72.195	0.3
77	8.2	mile	10340	100	Time	10.68	140	10.27	71,865	39798	0.1

现场仪器校准照片:

32 1946-2016 46

附件8:建设用地土壤污染状况调查质量控制记录表						
中央 大学						
10.0	MADE	多 集成引	TOWNSHIELD	****	6486	
1		and h	Annual Manual Company and Annual	5/	HE STATE	
			THE RESERVE OF THE PARTY OF THE		Second A	
			WOLD SAMPLIANTS US NO. 12.	쾖	CHARGE STREET	

专家复核签字:

江阴市徐霞客镇黄泥头路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(专家组)

修改建议	修改说明	修改示意(截图)
1.核范思生物。	已修改标,并图图内内4-P7。调近无河块察补用的的一个方面,是是一个方面,是一个方面,是一个时间,是一个时间,是一个时间,是一个时间,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	### ### ### ### ### #################
2.补充快 筛点位设 置的依据;	已补充快筛 点位设置的 依据,详见报 告 P49。	《建议用始上举方数状况调查核大导机》(HJ251-2019)》是的七项点位 布设方法包括手统储机布点法,少业判断有点法。每区布点法和系统布点法。根 据各市点方法的适用事件,选择系统布点法、以 20m×20m 网络。在网络内语 行为点、采集录层土(Q-0.2m):手工取录层土壤进行 PID、XRF 预场供加加 足。本次快源共布设 50 分平样点 T1~T50。具体点位信息见至6.1-1。作从图 见图 6.1-1。
3.完善现 场记录、照 片等全过 程质控材 料。	已完善现场 记录、照片等 全过程质控 材料。详见附 件。	

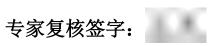
99 (1912/2017-61

	20 to 100.00 00 100.00	14.0-4	145	Take 1	1
2000 PGH 7	100,100,000		19	PAGE NO.	the building to the A. of the course of the
	21- Auditi	Hen	41	E35964	Military.
per 64/july	9	MHE	W	製造を	AALL while must not
zendralu-	1 /		-		Limits;
transfer .	9	16	71	/	
				1	
PERSONAL PROPERTY.		ANT ABUSE Y	¥	\$01760 BHO	oli

not remaind up a

	HOREN FLAR	Si		化 器 校	推记。	at di		251W Jr.	white of	
	Sans.	お客を見り	STREET,	BEHERN.	SEAS.	SHAR	1000	20.25	Nava	419
17	and at 111 halls	налине.	mbg#-a	金属を入っ 計算所の 大統領的	114	GARAGE	1434	6 Em	100	1
4	Just to the state of the	Ni.	New!	M. M. S. C. T. M. M. J. H. All Dress Res.	24-	4	200	1-5	Sin.	1/2
r.	SART THYON	214	infe-	N. S. S. A.		may	ĖST	-12	F B, E Rose	1
Ř	South () said.	olatinista	44441-4	W RE ATT	214	祖祖	白起体	611210	1 5 K	1
•	Dayon () akir Karpan daga saga	-8/4-	ab m.	4 5 1/2 C 4 5 1/2 C 1 1/10 may Kin	day	110	ttp	neig	118.0	3/2
-1	paper i il idi.	224	Holes-	1 7 4 1 1 7 4 4 1 5 5 4	/age-	day	15%	reign	N. S. S.	1

0.015	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	701								
	(a) (m)	- 1 - 0	1.0	0.0		16	a gray passes				
	0.57		1.0	3	7.7	- F	- 1		4	- 1	0.5
7)	1,2	166	13.99	50	6.036	41.0	148	1039	25786	22.66	0.5
7.	8.2.	96	11414	100	99.81	0.54	140	nai	79.180	72.105	0,3
77	0,2	mile	D(54)	700	75.200	10.68	140	10.24	73,168	361/8	0.1


運场仪器校准照片:

附件8;建设用地土壤污染状况调查质量控制记录表								
· 查查标准上面可见的故障或是有力量的直移的								
 4 4	1985	BERR	****	-	HEER			
		****	The second secon	計	THE STATE OF THE S			
			TOTAL PROPERTY OF STREET	20	manufic same			

江阴市徐霞客镇黄泥头路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(王佩)

修改建议	修改说明	僧	设示意(截	图)	
1、核实地块 拐点坐标, X 为7位, Y为 6或者8位, 且与附件资 料不一致;	已修改地 块拐点坐 标,并与 附件宗地 图一女内容 见 P4-P7。	1 2 3 4 5	图 2.2-2 坡坡京地 表 2.2-1 項目 坡坡形点 2006 回家) 基 学标(X)/m 3509448 3.06 3509456 998 3509451,133 3509469,283	24	4
2、优化章节 标题,第6 章为现场快 筛,地表水 和底泥检测 不属于快筛 内容;	已优化章 节标题, 详见 P48- 65。	6.13 項時內部換查 6.14 現所依據並 6.15 法律性關係 6.2 地表本、這是世期 6.21 种品物類 6.22 地表本、意思	た 9 利用な 単 目 八 物 利 方 ホ		
3、核实引用 地勘资料, 流场不具有 参考价值, 两个地块中 间存在地表 水体;	已核实引 用地勘资 料。具体 内容见 P15-P21。	本次调整阶段技术人员 土工程勒率报告》(勘等编。 参求有文化创意并生超佳年 450 末。 由于推考周围水系处等, 报告,未次调查推珠与推广等 似情,具体恒置详明图3.1-2	号: G2019016-1, 2019 小区位于调查地块东加 ,调查地块附近未收集 等等东方类化创建产业	9 年 12 月)中水文 (例,距离调查地块基 到无河流服器地线	也属情况, (线距离约 9工程勘察

4、完善快筛 点位布设 图,补充网 格信息, (图 6.1-1),补充快 筛点位坐标 信息;

已完善快 筛点位布 设图,见 图 6.1-1。 已补充快 筛点位坐 标信息, 见表 6.1-

1。

表 6.1-1 上集快箱点价信息

	送机多种						
2位编号	E- le h	16.04					
Ti	120.3197821	31.70799429					
T2	120.1196990	31,70784677					
T3	120.3196024	31.70769656					
T4	120.3194629	31.70755709					
T5	120.3194039	31.70758006					

5、核实现场 采样深度, 表层土还是 0-0.5m的 土? 附件记 录为 0.02m;

已核实现 场采样为 表层土: 0-0.2m, 并 完善了附 件记录。

	WHER T	200		351									
VALUE OF THE PARTY NAMED IN	7.00	T	M	T.	7.	" al	-	. 0	F				
	0.68		.2	.2	1.0	E.	2.		T.	12	1,1		
71	-82	mylig	038	193	4586	48.5	_fve-	Uhwă:	976	20.696	1.0		
12	8.2	mig	13/04	59	66.602	20.69	320	1985	348	15.86	12		
73	8.2	mp4g	1860	1500	71.88	150,656	52	101576	1650	16.59	- 11		

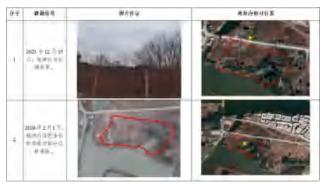
6、地表水和 底泥编号是 一个吗?建 议核实, 附 件中水质检 测报告出现 W1 和 W2;

已核实地 表水和底 泥编号。 详见报告 P51 点位图 和附件6。

7、T34 T2、 T3、T34 浓 T34 浓 T34 浓 压	已 6.5-2 (FID VOC1 pp	the 60 kg 65 kg 1000 kg 18000 kg 18000 kg 18000		表大生 02 19:543 ND 87:966 50:686 ND 945:096 38:486 47:311	表。年 0.1 5 025 ND 57.764 14.912 MD 37.77 12.155 13.617		## ## ## ## ## ## ## ## ## ## ## ## ##		
8、补充地表 水以及底泥 现场平行样 采集及实验 室分析内 容;	已补充以现场 底泥现场 平行实的 集及析 等 等 ,详见 P63-64。	+ 第二十二								
9、地块内和 地块外的地 表水和底泥 样品建议分 别评价;	对地块内和地块外的地表水和底泥料品分别评价,详见P63-P65。	# E in	F pH 作 (永定時) 1 5-5	2.0004 2.0 5.0004 2.0 5.0004 2.0 5.0004 2.0 5.0004 2.0 5.00072 8.1 2.0021 89 3.1 5.0021 89 3.1	0042 000011 0042 000011 0042 000011	0.02	eventier 			
10、完善人 员访谈材 料,周边居 民访谈内容 中地表水用 途?	已完善对 周边居民 陈才香的 访谈材	2023.12.15	4.44	信息 大师 北江 他,	2上地块面积 在2018年, 5业生产,后 主要是水杨 百成者至地。	(为皇祀的) 京古: 全排 地中间标: (和今走。)	村, 厚屋都里 注: "我走了 孙由刚近宫! 场地阁边吃:	农院治建的。 。 场地内改有 民和性过去治 是一些居民和 :我回谍疏水。		

	ı	
	料,地块	
	周边地表	
	水曾用作	
	农田灌溉	
	水。	
11、补充附 件资料清	已补充建	
	设用地土	附件8;建设用地土壤污染状况调查质量控制记录表
单,补充建	壤污染状	
设用地土壤	\D\M + F	老 新拉州北上市下降以及南北市州大市市省市市
污染状况调	况调查质	74 MENT NEWS COMMAND.
查质量控制记录表。	量控制记	Table 10 - 10 - 15 - 15 - 15 - 15 - 15 - 15 -
	录表,详	
	见附件8。	

专家复核签字:


2024.4.10

江阴市徐霞客镇黄泥头路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(项立辉)

修改建议	修改说明	修改示意(截图)							
1、P15 补充说明 引用工勘报告的 合理性,核实地下 水流向判定的为理性(引用工勘报 告地块与调查地 块之间有河流阻 隔)。	己补充说明 引用工勘报 告的会地下水 流向型性。详见 P15-P21。	本次调查阶段技术人間主要参考(於商業營育方文化创意产业固住宅项目岩土工程勘察报告) (勘解编号; G2019016-1, 2019 年 12 月) 中水文地质情况、梦东方文化创意产业固住宅小区位于调查地块东北侧,距离调查地块直线距离约450 年。 由于地桥周围水系众多,调查地族附近水收集到无河流阻隔地块的工程勘察组告,本次调查地块与情题享要并为文化创意产业组地块地商条件具有一定的相似性,具体位置详见图3.1-2。							
2、P21, 完善图件 绘制(项目周边 500m 范围敏感 目标示意图不准 确)。	已完善图件 绘制,见图 3.2-1。	(版例) 「							

3、P41,补充地块 现场踏勘照片及 地块现状描述,如 东南部地表水水 质情况。

已补充块现 场踏勘照片 及地块现状 描述,见 P41。 项目组于2023年12月15日和2024年2月1日他后两次对该地块进行了原 场路勘工作,经现场路勘处现,地块内土壤面色无异常,现场未闻到刺激性气味。 2023年12月变场路勒时,地块内长满杂草。2024年2月1日现场路勘时,地块 内大部分杂草已清除。地块西作和不信为空地,地块北侧的商业的区建筑物均为 空置抗夸、具体到场限片见表 5.1-L.

4、P49点位布设图显示T35和T39布设在地表水体内,但后面附件材料中的点位位置与照片不相符,请核实。

已核实点位 布设情况,并 增加了点位 经纬度信息。 详见 P49-51。

图 6.1-1 土壤快雜及地表水、荒泥布点图

表 6.1-1 土壤快筛点位信息

点也颇号	馬生坐标						
品, 世 随 专	经生*	經度0					
T1	120.3197821	31.70799429					
T2	120,3196990	31.70784677					
T3-	120,3196024	31.70769656					
T4	120.3194629	31.70755709					

5、补充完善地表 水及底泥采样记 录等附件材料、补 充土地征收相关 文件。 已补充水场照景等成为 采样 件 附 见 了 相 , 补 作 化 十 土 关

江苏省人民政府

苏政地 B [2024] 14号

江苏省人民政府关于江阴市 2023 年度第 9 批次 城镇建设用地的批复

江阴市人民政府:

你市呈报的2023年度第9批次城镇建设用地呈粮材料收悉。 受省政府委托用地审批权,该批次由无锡市人民政府落实和承接 审批。经审查,现批复如下:

一。同應将位于你市徐霞客鎮农民集体农用地 23.9530 公顷 (耕地 6.2163 公顷),未利用地 2.9835 公顷转为建设用地并征收

江阴市2023年度第9批次城镇建设用地

(市) 朱皇宇[2013] 第17号

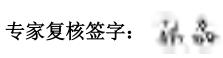
备往	开发 用道		(2) (1) (1)	地名图积 五					
		未利用场	**********	this .	821	SER	相類单位	開始位置	龍与-
		*有用·8	兼设河地	其中耕地	(新新)	849			
	公司建新	1.2874	A. 068C:	1: 9136	n mez	17-4528	24 医69.0	江州市世高 会被17运行 。 性疫多行	i
	ESSE	0.0046	5-7240	0,7330	+ 1163	1. 8886	第一三届工作 作 (2019) 10 出海压合金属 日本作品工	於斜市場像 香棚工建門 - 無難等的	1
	diA	i, mire	2,8300	2,0001	11,1315	i Ligno	第一三国在市		1
		Lwas	E-MIN-	6.2162	23,3510	12.10%		άn	
		69 1701	69,00000	93.246	29.300	503. Lesks		84	

6、建议在地块外
选择一处未受扰
动区域布设土壤
快筛对照点。

报告引用相 邻地块土壤 调查检测数 据,详见 P57。

無体部里		and .	R 分析研	800	7.00	91	规据	
		#6		800	原光型	莱皮族	表大臣	\$ t.
PID VOCE 1		ppen	1.4	0.1	0.2	0.1	0.2	- 6
	24	mgkg	60	4.526	19.543	5.025	18.509	Ü
	海	mgkg	-85	ND	ND	ND	ND.	0
	.15.	mgkg	2910	21,356	87.966	37.764	94.004	0
	tir	ingkg	800	11:148	50.698	14.912	40.249.	0
XRF	4.	mekg	38	ND	ND	ND	ND	ij.
	141	mg/kg	10000	40.447	149 096	37.77	248,241	0
	ir	mgkg	900	7.735	38.486	12,155	40.55	0
	191	make	18000	9.12	47.311	13 817	49.91	ù

住。古阿克伯别战损在南平河西北北方《西北)正明东京周末和湖北村民市。 東京村西州市 地上,与北河目地北州市 20mm 北川地谷市产业市主义,刘明县经别数据规则作 6


专家复核签字:

江阴市徐霞客镇黄泥头路东、湖庄村路南地块 土壤污染状况调查报告修改复核清单(张磊)

修改建 修改说明	修改示意(截图)
	修改示意(截图) 3.1.3 地形地貌 正阴市属于南京边缘的凹陷印度运动时期当于大部分地区断块下陷形成的 白垩纪畅设盘地。盆地形成后继续下降,上回堆积了底障的新生界沉积物、地面 出露的地层比较同季、压除均为泥盆系面透现合享山野、其他地层被需回系沉积 层所掩埋。地势东北郭我高、西北部为平地。境内河道纵横、较大的有忧花差、 填土河等、水质源形足。 据本芳野科表明,江阴位于扬于断块区的江南断褶带内,由璇元古代的豪盾 着底和襄旦纪以后的沉积盖层组成。江阴位于常澄中断末的东北障、即徐之为江 阴断褶断,北面侧为甲漆中断凹陷、需杀侧为青阳-德丰中断凹陷、在构造形态 上表观为断褶壁起、其边界变断裂所控制、常澄中断末带总体构造线方向为北东 至北东东向,以底盆系等山群及三迭系青走野为核部、分别组成了本区内的江阴 发青斜三个构造带。江阳发脊斜为一度背斜构造带,铀邻在江阴客山、风截山、 是正偏一线、是向由 NE450 或形变为 NE650, 星略向 NW 凸起的 NEE 荷瓶形展布。复式背斜两翼产块变化大、北面翼限,候角一般在 250—600;南东翼板接、柳角 200-400。本区内的餐回纪沉积物是基岩构造,长江河边的安迁及海平面的 升降控制,可分为长江市海积于原和山前线积两大类,本场地的第四纪沉积物属 长江下游州积平原、超面高程 2~3m(煮油系统)、属长江三角洲区的一部分。 3.1.4 水文水系 正院水影众多,全市可分为城西新沟河水影、中部强是迂河水影和东部张系 清水系。地域内地下水堆深蔽浅、属于绘散岩类和底潜水。 本区设部地下水土要为潜水、潜水至是分带于(1-1)层素填土中、价给未 源土更为大气降水,具条至节性变化、排泄于自然震发,其水位受大气降水影响 明显。 给商客俱历史最高水位为3.19m、3~5 年内最高潜水水位标高 2.60m 至之一

2. 表	已补充快						₹ 6.1 .	4 疫苗协	特权量分	针在				
		507 S 5 S 5 S 7 S 5 S 5 S 5 S 5 S 5 S 5 S									(at pt bbm)			
6.5-1补	筛设备检	1812	m	4 -	4	4	15	10	- 6	9		-16.	H.	(4-11 ; bbm)
			631		2	2	1	1	2,			1	1	0.1
充快筛	出限,详见	11	62	ngk			62.89	46.76	Nu	-		3 120	22.66a	BT
700000	Ш,к, и л	45	0.2	mple			5.42	33.408		-	- 1	0.850	35/101	2.0
设备检	P55,表	ri -	11.2	ngk			11.266	50.000	-	- 2.5	2.5	6 dth D	Jif Re	0.1
以雷徑	F33, 1X	14	0.3	mply	_		PARIS PARIS	25 133	-			0 #27 3.699	25.17%	p.i
.1.70		TY	0.2 0.2	mek		1	14.081	30.986		-	-	9,397	22.157	0.2 0.1
出限。	6.1-4。	80	0.2	mgAg	14:398	ND	11.781	30.986	812	34	595 2	7.297	27.427	b.f.
		2.4	and a line	rm- N.wh	MARINENSE.	n byte:	4 K	FI S	126.	eras exem exem	****** ******	6 Km	Manus Manus Manus Manus	2001 200
	已梳理完	己梳理完 7/4	1-7-4 / 5AZH: 78		4/4	350.50	東 東 東 東 人間り	H H	2.5	4	ziV	1-5	a na	to
3. 梳理	善快筛设	74	NAME OF		#194	infe-	1775	PE NAME AND THE PERSON NAM	-7	maga	ÈST	7%	n n,z	18
完善快 筛设备	 备校准记	184	losses 14	5/49/	obstatista.	444818:44	1/1/10		214	ditaké	684	6100	700 E	7
		1890	Mayre 40	41.004	-66-	. Alb Wit.	9.70	rmj Kim	(filter	110	ttp	naigt.	100.0	38
	录 (照片)	160	BARTIN (4)	i di way	£24	ipiet-	9.7	40 M 10/ Kpt	/mga-	dage	粉片	THIS	THE I	1
校录片附料	等附件材 料,详见附 件 4。		规场仅	(温校)	REMARK.				1.	C				

2024.4.11